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Abstract

In some cases, the decomposition of a pos-
itive elements' matrix in a way similar to

the formal SVD (Singular Value Decom-

position) with positive elements in all vec-

tors is desirable. This Positive Singular
Value Decomposition is the objective of

this work. In this paper, the Positive SVD
is examined for 2�D arrays.

Key words: Positive multidimensional

systems, singular value decomposition,
two-dimensional arrays techniques, posi-

tive singular value decomposition, mea-
surements.

CSCC'99 Proceedings: Pages 1031-1037

1 Introduction and Prob-

lem Formulation

It is known that in the context of modern

computer science, the method of the sin-
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gular value decomposition (SVD) plays an

important role. This very popular tech-
nique permits the data compression of a

2 � D or m � D with m > 2 array. As
a result, a great economy in data storage

as well as in the data transmission is ob-
tained. SVD is analytically presented in

standard textbooks on Linear Algebra and
Image Processing [1 � 6]. The SVD of an

N1 � by �N2 matrix A is

A = �1u1v
T
1 + : : :+ �rurv

T
r (1)

where for the so called singular values

�1, �2, : : :, �r it has been assumed that
�1 � �2 � : : : � �r where �i =

p
�i; �i

are the eigenvalues of ATA (i = 1; : : : ; r)
where T denotes the transpose matrix).

The vectors u1; v1; : : : ; ur; vr are certain
orthonormal vectors and r = rank (A) �
min(N1; N2). A more detailed description
of the method can be found in [1,2]. In a

tensor notation [3], Equation (1) is written
as

A = �1u1 
 v1 + : : :+ �rur 
 vr (2)

where 
 is the usual tensor product. In
many professional software packages (such



as MatLab or Mathematica) the method is

automated via appropriate commands.
One should also note that one of the

main application of the SVD is the data
compression of a 2 � D array and the
resulting economy in data storage when:

�1 � : : : � �q � �q+1 � : : : � �r (where
q < r), because in this case Equation (2)

can be approximately written as

A = �1u1 
 v1 + : : :+ �rur 
 vr (3)

So, instead of N1 �N2 memory positions

for the matrix A, we need only q � (N1 �
1 +N2 � 1 + 1) = q � (N1 +N2 � 1) since
every orthonormal n�vector requires n�1

memory positions.
It is also well known that if we de-

mand the optimum approximation (in
the sense of the least squares approach)

of a matrix A by a product �uvT i.e.

minimization
������A� �uvT

������ this minimiza-

tion yields � = �1; u = u1; v = v1 where

�1; u1; v1 are those that result from the
SVD. This very important property of the

SVD permit us to solve several optimiza-
tion problems via SVD, [1 � 6]. Further-
more, in k step (1 � k � r); �k; uk; vk
are the same with those resulting from
the solution of the minimization problem

(with respect to �; u; v)

min
������Ak�1 � �uvT

������ (4)

where

Ak�1 = Ak�2��k�1uk�1v
T
k�1 (A0 = A)

This is the so-called least squares property

of the SVD.
In this paper, an attempt is made to

�nd the decomposition of a positive ele-

ments' matrix in a way similar to the for-

mal SVD (Singular Value Decomposition)
with the above stated least squares prop-

erty, where all vectors of the SVD ought to
contain positive elements. In other words,
our problem can be formulated as follows:

Find a decomposition of the matrix A as
in Equation (1) with the least square prop-

erty under the constraint all �'s and all the
coordinates of u's and v's to be positive.

This is a problem arising in Statistics as

well as in Measurements Engineering when
our Data are all positive and when we at-
tempt an approximation under the con-

straint of the positiveness of all quantities
(entries) in the vectors u1; v1; : : : ; ur; vr.

Moreover, Positive 2-dimensional Sys-

tems Theory seems to gain ground nowa-
days, promising new interesting applica-
tions in biomedical signal processing as

well as in physics and astronomy, comput-
ers architecture etc, [12� 15].

2 Problem Solution

Let A, B be two matrices (i.e. two-
dimensional arrays) of the same dimen-

sions, we denote as A=B the matrix for
which the i; j element results from the di-

vision of the i; j element of A by the i; j
element of B.

Now, the solution of the PSVD (Posi-
tive Singular Value Decomposition) prob-

lem should actually can follow the follow-
ing strategic:

Find � = �1; u = u1; v = v1 such that������(A� �uvT )=A
������ to be minimum with �

and all the coordinates of u and v to be
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positive.

Afterwards, consider the new matrix
A1 = A � �1u1v

T
1 and �nd � = �2; u =

u2; v = v2 such that
������(A1 � �uvT )=A

������
to be minimum with � and all the coor-

dinates of u and v to be positive. Finally
(after r iteration steps) �nd the decompo-

sition

A = �1u1v
T
1 + : : :+ �rurv

T
r (5)

where all �'s and all the coordinates of u's

and v's should be positive. Note that:

r =rank(A) �min(N1; N2). This de-

composition results as follows: In k step
(k; 1 � k � r); �k; uk; vk result from

the solution of the following minimization
problem (with respect to �; u; v)

min
������(Ak�1 � �uvT )=Ak�1

������ (6)

where
Ak�1 = Ak�2��k�1uk�1v

T
k�1 (A0 = A)

The solution of the problem proceeds
as follows: First we �nd � = �1; u =
u1; v = v1 from the minimization prob-

lem
������(A� �uvT )=A

������ where � and all the

coordinates of u and v to be positive. To
this end, let us denote the i1; i2{element of

the matrix A as a(i1; i2), the i1{element of
the vector u as b1(i1) while the i2{element

of the vector v as b2(i2). The constant � is
incorporated at the moment in the prod-

uct of u and v.

So,

we have to minimize the N1 x N2 quan-
tities: (a(i1; i2) � b1(i1)b2(i2))=a(i1; i2) or
equivalently 1� b1(i1)b2(i2)=a(i1; i2).

Therefore, we have to solve (least

squares) the problem

b1(i1)b2(i2)=a(i1; i2) �= 1 (7)

or equivalently

lna(i1; i2) �= ln b1(i1) + ln b2(i2) (8)

or

a0(i1; i2) �= b01(i1) + b02(i2) (9)

where

a0(i1; i2) = lna(i1; i2) (10)

b01(i1) = ln b1(i1) (11)

and

b02(i2) = ln b2(i2) (12)

and i1 2 f1; : : : ; N1g and i2 2 f1; : : : ; N2g.
We write Equation (9) as follows:

b01(i1) + b02(i2)
�= a0(i1; i2) (13)

with i1 2 f1; : : : ; N1g and i2 2
f1; : : : ; N2g. These N1 x N2 Equations

constitute a typical optimization problem
linear in a0(i1; i2), b01(i1) and b02(i2) Fur-
thermore, if we use the notation
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C =

2
6666666666666666666666666666664

N1z }| {
1 0 : : : 0

1 0 : : : 0
...

... � � � ...
1 0 : : : 0

N2z }| {
1 0 : : : 0

0 1 : : : 0
...

... � � � ...
0 0 : : : 1

0 1 : : : 0

0 1 : : : 0
...

... � � � ...
0 1 : : : 0

1 0 : : : 0

0 1 : : : 0
...

... � � � ...
0 0 : : : 1

...
... � � � ...

...
... � � � ...

0 0 : : : 1
0 0 : : : 1
...

... � � � ...
0 0 : : : 1

1 0 : : : 0
0 1 : : : 0
...

... � � � ...
0 0 : : : 1

3
7777777777777777777777777777775

(14)

as well as

b0 =

2
6666666664

b01(1)
...

b01(N1)

b02(1)
...

b02(N2)

3
7777777775

(15)

and

a0 =

2
6666666666666666666666666664

a0(1; 1)

a0(1; 2)
...

a0(1; N2)
a0(2; 1)

a0(2; 2)
...

a0(2; N2)
...

a0(N1; 1)
a0(N1; 2)

...;
a0(N1; N2)

3
7777777777777777777777777775

(16)

then the above optimization problem re{
written as follows

C � b0 �= a0 (17)

It is known ([1� 4]) that the approximate

solution of this problem is given as follows

b0 = (CTC)�1CTa0 (18)

where

CTC =

2
666666666666664

N2 0 : : : 0 1 1 : : : 1

0 N2 : : : 0 1 1 : : : 1
...

... � � � ...
...

... � � � ...
0 0 : : : N2 1 1 : : : 1

1 1 : : : 1 N1 0 : : : 0
1 1 : : : 1 0 N1 : : : 0
...

... � � � ...
...

... � � � ...
1 1 : : : 1 0 0 : : : N1

3
777777777777775

(19)
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or in a simpler notation:

CTC =

"
N2 � I K
K N1 � I

#
(20)

I is the Identity matrix and K is de�ned

as the matrix with all of its elements equal
to 1 i.e.

K =

2
66664
1 1 : : : 1

1 1 : : : 1
...

... � � � ...
1 1 : : : 1

3
77775 (21)

Here K is a N2 � by � N2 matrix. Un-

fortunately, the matrix (CTC) is singular.
That means that we have more than one

optimal solutions. This also means that
for all these "optimal solutions" the total

square error of approximation is exactly
the same. For this reason, we can demand,

in addition, the minimization of jb0j. So
the considered problem is reduced to

min b02 (22)

under the constraint of (17). By introduc-
ing the well-known concept of Lagrange

multipliers, the constrained minimization
problem is reduced to an uncostrained one.

min b02 + � � CT (Cb0 � a0) (23)

The �nal minimization over b0 and � is
achieved by using a variety of numerical

techniques. Elegant results can be ob-
tained by the Levenberg-Marquardt rou-
tine.

Another approach would be the param-

eter solution of (17) with respect to b0 de-
pending on the real parameters �1, �2, : : :,

�� where � = N1 + N2�rank(CTC). In
such a case, we introduce these parameters
to (22) and proceed with an uncostrained

minimization problem.

So, b01(1); : : : ; b
0

N1
; : : : ; b02(N2) are

known. Therefore,
b1(1); : : : ; bN1

; : : : ; b2(N2) are also known
(Equations (11) and (12)). So, the vectors

u and v are known. We normalize them
de�ning:

û =
u

jjujj (24)

v̂ =
v

jjvjj (25)

Therefore

� = jjujj jjvjj (26)

The normalized vectors u1 = û, v1 = v̂,

are now used as u and v (re{de�nition of u
and v). Obviously, they are with positive

elements and they are such that the norm������(A� �uvT )=A
������ to be minimum. The it-

erations of the \positive Singular Value

Decomposition" of A consists exactly by
the same steps and they are dealt simi-

larly. So, one must consider the matrix
A1 = A��1u1vT1 and �nd in the same way

� = �2; u = u2; v = v2 and after r steps
the decomposition shown by Equation (5)
where all �'s and all the coordinates of u's

and v's will be positive.
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3 Conclusion

In this paper, the concept of the PSVD
(Positive Singular Value Decomposition)
is introduced and investigated. MORE

DETAILS SEE IN [17]. By the term
PSVD, it is meant the decomposition of

a positive elements' matrix in a way sim-
ilar to the formal SVD but with positive

elements in all vectors. The PSVD could
seem useful for Positive m � D Systems

design and applications [12� 16].
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