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A Non-Linear Two-Dimensional Model
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Abstract.  In many applications, non-linear models are actually obtained. In this paper, a non-linear 2-D (two-
dimensional) model is presented and its study is attempted via numerical methods. The proposed non-linear
model corresponds to a linear 2-D one recently proposed by the author [8,9]. The model consists of a system of
non-linear Partial Differential Equations (PDE's).
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1   Introduction

2-D systems' analysis and synthesis have attained
great sophistication maturity. Several books have
been also edited which give excellent surveys of the
recent results of 2-D systems among them they are
[2], [3], [4]. Various mathematical fields, such as
factorization of multivariable polynomials and
multivariable matrices, 2-D system stability, singular
2-D equations etc. are also motivated by 2-D system
theory, [10]÷[16].
     The most famous and almost exclusively utilised
state-space model for these systems is the Roesser
model [1]. The Roesser model is stated for the
discrete Linear Shift Invariant (LSI) 2-D systems as
follows

( ) ( ) ( ) ( )21121222111211 ,,,,1 nnuBnnXAnnXAnnX ⋅+⋅+⋅=+
                (1a)

( ) ( ) ( ) ( )21221242113212 ,,,1, nnuBnnXAnnXAnnX ⋅+⋅+⋅=+

                (1b)
( ) ( ) ( ) ( )212122211121 ,,,, nnuDnnXCnnXCnny ⋅+⋅+⋅=

(2)

with the initial conditions: ( )21 ,0 nX , ( )0,12 nX  ,

n n1 2, ∈Ν . 
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X  is the state-space

vector, X X1 2,  are vectors of N N1 2,  dimensions,
u, y are the scalar input and output respectively and
A A A A B B C C D1 2 3 4 1 2 1 2, , , , , , , ,  are matrices of
appropriate dimensions.
     The Roesser model is first stated as a practical
model for image processing. However, Roesser gave
a theoretical foundation to it. However, almost all the
papers refer to the discrete 2-D LSI systems. Only in

few works the corresponding continuous model is
simply mentioned [5], [6], [7]. The continuous model
which correspond to the Roesser discrete model is the
following system of PDE's. ([5], [6], [7]).
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,,,
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∂
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yxX
,,,
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22413

2 ⋅+⋅+⋅=
∂

∂

                      (3b)
( ) ( ) ( ) ( )yxuDyxXCyxXCyxv ,,,, 2211 ⋅+⋅+⋅=

                          (4)

with the initial conditions: ( )yX ,01 =f(y),

( )0,2 xX =g(x),  x y x y, , R  (i.e.   )+ ∈ ≥ ≥0 0 .
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1  is the state-space vector,

( ) ( )yxXyxX , ,, 21  are vectors of N N1 2, 
dimensions, u, v are the scalar input and output
respectively and A A A A B B C C D1 2 3 4 1 2 1 2, , , , , , , ,  are
matrices of appropriate dimensions.
     The main difficulty in this model is :    Suppose
that u(x,y)= ( ) ( )yx δδ , where ( )δ  is a delta (Dirac)

function, then substituting for example in (3a), one
finds ( )yxX ,1  to be incontinuous with respect to x

as well as to be delta function with respect to y. This
is not true since, especially in image processing, both

( ) ( )yxXyxX , ,, 21  are assumed to be bounded
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functions. So, various difficulties can be obtained if
one attempts to find the general response formula in
this model.   It seems unavoidable that a modification
in this continuous model should be made.
     In order to overcome the above difficulty obtained
at the continuous analogous of the 2-D Roesser
model, the following continuous model has been
proposed in [8] and [9].

( ) ( ) ( ) ( )∫⋅+⋅+⋅=
y

dyyxuByxXAyxXA
x

yxX

0
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∂

                       (5a)
( ) ( ) ( ) ( )∫⋅+⋅+⋅=
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                      (5b)
( ) ( ) ( ) ( )yxuDyxXCyxXCyxv ,,,, 2211 ⋅+⋅+⋅=

(6)

with the initial conditions: ( )yX ,01 =f(y),

( )0,2 xX =g(x),  x y x y, , R  (i.e.   )+ ∈ ≥ ≥0 0 .
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yxX

yxX
X

,

,

2

1  is the state-space vector,

( ) ( )yxXyxX , ,, 21  are vectors of N N1 2, 
dimensions, u, v are the scalar input and output
respectively and A A A A B B C C D1 2 3 4 1 2 1 2, , , , , , , ,  are
matrices of appropriate dimensions.
This  model has been analytically studied in [8].
In the present paper, the following general non-linear
model is introduced
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with the initial conditions: ( )yX ,01 =f(y),

( )0,2 xX =g(x),  x y x y, , R  (i.e.   )+ ∈ ≥ ≥0 0 .
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,

,

2

1  is the state-space vector,

( ) ( )yxXyxX , ,, 21  are vectors of N N1 2, 

dimensions, u, v are the scalar input and output
respectively.
The objective of the present paper is the study of the
above non-linear 2-D model i.e. the system of (7a),
(7b) and (8).

2    Main Results
First, one ought to find ( )0,1 xX  and ( )yX ,02 . This

can be achieved as follows.
( ) ( ) ( )( )0,0,,0,

0,
211

1 xXxXf
x

xX
=

∂
∂

(9)

or
( ) ( ) ( )( )0,,0,

0,
11

1 xgxXf
x

xX
=

∂
∂

               (10)

with the initial condition ( ) ( )00,01 fX =
This is a (non-linear) ordinary matrix differential
equation and it can be solved using any numerical
method (Taylor, Runge-Kutta, etc.). Similarly, we
have

( ) ( ) ( )( )0,,0,
,0

22
2 yXyff

y

yX
=

∂
∂

         (11)

with the initial condition ( ) ( )00,02 gX =

This is also a (non-linear) ordinary matrix differential
equation and it can be solved using numerical
methods (Taylor, Runge-Kutta, etc.).

Afterwards, an attempt is made to find ( )yxX ,1  and

( )yxX ,1  . To this end, a discretization of our space

is made. So, our plane is divided into the points
( )ynxn ∆⋅ ∆⋅ 21 ,  where n n1 2, ∈Ν . So, if one uses

the Taylor's theorem, then one has

( )( ) ( )
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x

X
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∆⋅+∆⋅∆⋅=∆⋅∆+
∆⋅∆⋅ 21 ,

1
211211 ,,1

∂
∂

                        (12)
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1112122111
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,,,,,

,,1

(13a)
Similarly one finds:

( ) ( ) ( ) ( )( )yxuyxXyxXfyxv ,,,,,, 213=
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( )( ) ( )

( ) ( ) ( ) ydxynxuynxnXynxnXf

ynxnXynxnX
xn

∆⋅









∆⋅∆⋅∆⋅∆⋅∆⋅+

+∆⋅∆⋅=∆⋅+∆⋅

∫
∆⋅1

0

1212122112

212212

,,,,,

,1,

(13b)

Equations (13a) and (13b) are also accompanied by
the equation

( ) ( ) ( ) ( )( )ynxnuynxnXynxnXfynxnv ∆⋅∆⋅∆⋅∆⋅∆⋅∆⋅=∆⋅∆⋅ 21212211321 ,,,,,,

          (14)

This can be called as the Taylor method in two
dimensions. Obviously, equations (13a), (13b) and
(14) are proper for computer use. This is the
proposed numerical solution for our non-linear
model.

3    Example

Consider the following simple example:

( ) ( ) ( ) ( )∫++−=
y

dyyxuyxXyxX
x

yxX

0

11
2
21

1 ,,,
,

∂
∂

(15a)

( ) ( ) ( )( )yxXyxX
y

yxX
,,sin

,
21

2 +=
∂

∂

(15b)

( ) ( ) ( ) ( )yxuyxXyxXyxv ,,3,2, 2
21 −+=

(16)

where ( )yX ,01 =y, ( )0,2 xX =sin(x),

( ) ( )yxXyxX , ,, 21  are scalars for simplicity (i.e.

N N1 21 1=  =, ) and ( ) xyyxu =, .

First, we find ( )0,1 xX  and ( )yX ,02 .

( )
x

x

xX 21 sin
0,

=
∂

∂
                                     (17)

with the initial condition ( ) 00,01 =X .  The solution

of this simple equation is ( ) ( )
4

2sin2
0,1

xx
xX

+=  .

(Fig.1).

Fig.1: ( )0,1 xX  versous x

Similarly, from (11) one obtains
( ) ( )( )yXy
y

yX
,0sin

,0
2

2 +=
∂

∂

(18)

with the initial condition ( ) 00,02 =X . This is also a

non-linear ordinary differential equation and it can be
solved using a typical Runge-Kutta method (Fig.2)

Fig.2.   ( )yX ,02  versous y

.

Following the afore mentioned procedure one has
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( )( ) ( )
( ) ( ) ( )( ) xynxnynxnXynxnX

ynxnXynxnX

∆∆⋅∆⋅+∆⋅∆⋅+∆⋅∆⋅−+

+∆⋅∆⋅=∆⋅∆+

2/,,

,,1
2

2121
2
2211

211211

(19a)

as well as

( )( ) ( )
( ) ( )( ) yynxnXynxnX

ynxnXynxnX

∆⋅∆⋅∆⋅+∆⋅∆⋅+
+∆⋅∆⋅=∆⋅+∆⋅

212211

212212

,,sin

,1,

(19b)

and the output-equation

( ) ( )
( ) ( )ynxnuynxnX

ynxnXynxnv

∆⋅∆⋅−∆⋅∆⋅+

+∆⋅∆⋅=∆⋅∆⋅

21
2

212

21121

,,3

,2,

         (20)

So, it is obviously easy to find, via computer, X X1 2, 
and v  at the points n x n y1 2⋅ ⋅∆ ∆, .

4    Conclusion

In this paper, a non-linear 2-D model is presented.
The solution of this model is achieved via the Taylor
approximation and computer simulation. A non-
trivial example illustrates the method. Instead of
Taylor approximation, one can use Runge-Kutta
formulas or other modern numerical methods. This
very interesting methods are left for another
publication.
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