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Abstract: A new design method for two-dimensional (2-D) recursive digita filters is investigated. The
design of the 2-D filter is reduced to a constrained minimization problem the solution of which is achieved by
the convergence of an appropriate Neural Network. Anillustrative example is given and a comparison with the
results of previous methods is attempted. Many advantages of the present method against previous methods of
the literature can be ascertained.
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1. Introduction

During the last two decades many authors have proposed various methods for the design of 2-D
(recursive or non-recursive) discrete signal, linear and shift invariant filters. An excellent overview is given
in[3].

This growing interest for the design of 2-D filters is due to a variety of applications in fields as digita
image processing, medical data processing, artificial vision, radar and sonar data processing, remote sensing,
pattern recognition, numerical stereoscopy, astronomy and applied physics, biomedical engineering,
biochemistry, robotics and mechanical engineering [1],[2].

Design approaches for 2-D filters can be broadly classified into two categories:

i) based on appropriate transformation of 1-D filters[2], [3]
ii) based on appropriate optimization techniques [3, 10]

The stability of the designed filters is essential for their practical implementation. However, most of the
existing algorithms [3, 10] may result in an unstable filter. Various receipts have been proposed in order to
overcome these instability problems, but the outcome is likely to be a system that has a very small stability
margin and therefore no of essential practical importance.

In this paper, an optimization procedure is adopted by using continuous-time Artificial Neural Network
(NN). The desired stability of 2-D filter yields our appropriate constraints for the minimization problem.
Furthermore, an extension of the method is given in which we pre-determine the stability margin of the filter
and therefore we know if the designed filter is stable and how gstableiis.

Artificial Neural Networks or simply Neural Networks (NN) have aready been used to obtain solution of
congtrained optimization problems [11]. In 1984 Chua and Lin [12] developed the canonical non-linear
programming circuit, using the Kuhn-Tucker conditions from the mathematical programming theory. Later,
Tank and Hopfield [13] developed an optimization network for solving linear programming problems. Some
practical design problems of their network aong with its stability properties are discussed in [14].

An extension of the results of Tank and Hopfield to more genera non-linear programming problems is
presented in [15]. The authors noted that the network introduced by Tank and Hopfield could be considered to



added 1o account for the dynamic behavior of the circuit. The above discussed approach implicitly utilizes
the penalty function method [11], [16] where a constrained optimization problem is approximate by an
unconstrained optimization problem. In [17], the authors use the penalty function method approach and
synthesize a new neural optimization network capable of solving a general class of constrained optimization
problems. The proposed architecture can be viewed as a continuous Neural Network model and in [18], the
authors usc¢ SIMULINK for modeling and simulations of its behavior.

The advantage of using Neural Networks for solving a 2-D recursive filter design optimization problem
is in the rapid action of the network (VLSI scheme), where the solution is obtained in real time. We present
a Neural Network approach for solving 2-D recursive filters design problem.

The paper is outlined as follows. In the next section, the problem for design of 2-D recursive filters is
described. In section 3, a Neural Network for solving the design problem is utilized. In section 4, numerical
cxample for testing the Neural Network is illustrated. The example is the example of [3] and [4] and can
show the advantages of the method against the previous ones. Finally, conclusion remarks are given.

2. Problem Formulation

Consider My, the desirable amplitude response of a 2-D filter as a function of the frequencies Wy, g, (g,
a 9_E[() nt|). The design task at hand amounts to finding a transfer function H(z,,z,) such that the iunu]on

H(e™ ¢ ) approximates the desired amplitude response M, (w,, w,).
For the design purposes we consider that
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¢.g. the aim is to minimize the difference between actual and desired amplitude response of the filter in
NN, points. It is known that a linear shift-invariant causal single-input single-output 2-D system described
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by the following transfer function: G(zl,zz)= (—'L) - where A(z1,z )and B(z 4 ) arc coprime
Bley-2) v Py
polynomials in the independent complex variables z and Z?. - is stable if and only if the following two
conditions are fulfilled:
a) B(0, z,i) = (), for |z’_l <1 and
b) B(zi, zq_) = (), for [z"‘ <1, lzq| =1
Here by the term Stability, we mean Bounded Input Bounded Output (BIBO) Stability. One should note
that the first condition is relatively easy to check using any 1-D stability test. However, the second
condition is more difficult since it includes two variables. We also assume that there are no nonessential
singularitics of the second kind on the closed unit bi-disk, i.e. there are no points (zl, 22) with |21| =<1 and
zfls suchthat A(z,,z,)=B(z,,z,)=0.
For our design purposes, since we deal with first-degree factors in denominator, it had been proved,
[ 1+3], that the stability conditions are given by
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Thus the design of 2-D recursive filters is equivalent of the following constrained minimization problem
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where p is an cven positive integer (usually p=2 or p=4) and N,, N, and K are given positive integers.

3. Neural Network for Solving the Design Problem

To simplify the notations and without loss of generality we will consider the case K=2 and H(z,,z,) from

(1) is
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The 2-D recursive filter design problem (6) consists inequality constraints only and this is the reason we
utilize the Neural Network [1] shown on Fig.1 for solving the constrained optimization problem given in a
form:

min [(x)
subject 1o (N
g(x)>0,i=1.2,....m; x=(x,, X,, ..., X,)",



0,if g, >0

- k>0, i=1,2,...,m and w>0,j=1,2,...,n.
Lif g <0

where S, =<

(

-

I x/(0)
X
ul Q)
Computing network for X; (j=1,2, ..., n)
00 0 o0
X1X2 X Xn . . S
Figure 1 Neural Network for solving the constrained optimization problem
For successful implementation of the network the goal function’s component | M(w,,w,)| and the
constraints shown in formula (5) must be presented in an appropriate form.
From (4) and (3)
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In a compact form M(w,m,) is

M(ey,0,) = Hy — 2 =4

9
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A continuous differentiable form of the constraints has been obtained after considering (5)
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is a vector of unknown parameters and as a result we use the goal function f(x)=] from (3), subject to 6K
constraints (12).

The convergence of the network in Fig. 1 has been proved in [1] and the solution of the 2-D recursive
filters design problem could be found after transient of the network settles down.

4. Numerical Example for testing the Neural Network



We consider the design of 2-D recursive filter (1) for the case K=2 or
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and consider the desired amplitude response

1 if Jo] +o <0.08x
M, (0,0,)=105 if 0.081s 0’ +o0l s0.121 (15)

0 otherwise

We chose p=2, N;=50 and N,=50 and the corresponding constrained optimization problem become:
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g,(x)=b,+c,+d+1>0
g.(x)=-b,-¢,+d,+1>0
g(x)=b,-¢,-d,+1>0
gi(x)=-b,+¢,-d,+1>0
g+(x)=d,+1>0
go(x)=-d,+1>0 (17)
g+Ax)=b,+c,+d,+1>0
gx(x)=-b-C,+d,+1>0
go(X)=by-C,-dy+1>0
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g(x)=-d,+1>0
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where x=(ay,, ay, a;, a,, a3, Ay dy), Ax, by, by, €, €y, dy, dy, Hy)

For better quality of the desired result we use a weight 1000 for n,=0, n,=0 e.g. for the point w,=0, m,=0,
while the weights for other 2600 points are 1. After the transient of the Neural Network from Fig. 1, we
find the following vector with optimal parameters:

x=[1.8922 -1.2154 0.0387 -2.5298 0.3879 0.6115 -1.4619 2.5206 -0.8707 -0.8729 -0.8705 -0.8732
0.7756 0.7799 -0.0010]".

Therefore

1+0.0387z, +0.61152; -2.52982, z, +0.3879z, 23 +1.8922z, -1.461927z, +2.52062{z7 ~1.2154z>

H(z,,2,)=-001
(1-.8707z, -0.8705z, +.77562,2, 1 - 8729z, -0.8732z , +.7799z 2. )

The corresponding amplitude response | M(w,,w,) | is given in Fig. 2, while in Fig.3 onc can obtain the

amplitude response of the desired ideal |M, (w,, w,) | . Furthermore in Fig.4, we present, for comparison,

the result of the method of [3],[4].



Figure 2 Obtained amplitude response ¥M (wi,W.)vof the considered 2-D filter

Figure 3 Obtained amplitude response ¥2Mgy (Wi, W,).Yof the desirable (ideal) 2-D filter
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Figure 4 Obtained amplitude response ¥M (wy,W)¥of the considered 2-D filter by using the method of
[31.[4]

The advantages of the present method against the method of [3] and [4] are: @) We can check the stability
of the designed filter from the beginning of the procedure, since we introduce the desired tability as
appropriate constraints. On the contrary, the previous methods which are based more or less on a trial-and-
error approach can not always guarantee the stability of the filter. b) We implement a simpler filter since, in
practice, we have to redlize a factorable numerator and in particular of first-order filters which obvioudly
are simpler than those of [3],[4].

5. Conclusions

In this study, a Neural Network approach in the design of 2-D recursive filters is adopted. The design
problem is reduced to a constrained optimization problem and a continuous Neural Network is used in order to
find the optimal solution. We give the general form of the network and a specific numerica example that
show the applicability, the efficiency and the elegance of the method in areal design. Further, an extension of
the method is presented.

In Section 4, the advantages of the method against previous ones of the 2-D systems hibliography have
been discussed in details. More specificaly, the method appears to: @) give guarantee for the stability of the
designed filter b) yield simpler filter implementation.
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