
Verifying Multiparty Call in ATM UNI Signalling Protocol

GORDAN JEZIC and IGNAC LOVREK
Department of Telecommunications

University of Zagreb
Faculty of Electrical Engineering and Computing, Unska 3, HR-10000 Zagreb

CROATIA

GIRISH BHAT
Make Systems

4000, Regency Parkway, Suite 150
Cary, NC 27511-8502

USA

Abstract: - This paper presents formal specification and verification of the multiparty call in ATM UNI
signalling protocol. The protocol specification is written in the CCS process algebra (Calculus of
Communicating Systems). Verification is done by using the NCSU-Concurrency Workbench. Due to the
complexity of the protocol, the model is decomposed into three components. The protocol is verified by the
model-checking feature of the Workbench. Each of its components is checked for safety and liveness

properties using temporal CTL (Computation Tree Logic) and modal mu-calculus logic. CSCC'99 Proc.pp.1271-1276

Key-Words: - formal specification, model checking, verification, ATM signalling protocol, process algebra

1 Introduction
A typical protocol development process involves
two phases: the specification and design phase in
which a high level design of the protocol is specified
using a partially formal protocol description
language and an implementation phase in which the
high level description of the protocol is translated to
an implementation which is tested extensively for
bugs. The bugs in the final implementation could
appear either because of implementation errors or
design errors. Implementation errors can be found
easily. Design errors, however, are not only subtle
and hard to trace, but also quite exspensive to
correct as they require going back to the design
phase. Therefore, it is necessary to apply techniques
that detect errors early in the design phase. One
solution to this problem is to use rigorous formal
methods in the design process.
 This paper presents formal specification and
verification of the multiparty call in ATM UNI
signalling protocol. The protocol specification is
written in the CCS process algebra (Calculus of
Communicating Systems). Verification is done by
the NCSU-Concurrency Workbench [4, 5].
 The model of the protocol includes the

specification of the procedures for point-to-
multipoint connections and model includes three
users: one calling and two called users. Two users
enjoy the same rights: both can initiate the basic call
(point-to-point) and have of a third party join the
call.

Due to the complexity of the protocol, the model
is decomposed [8-10] into three components. The
first one covers all procedures for point-to-point
call. The second includes the procedures for a point-
to-multipoint call without clearing point-to-point
connection. In that case, after setting up a point-to-
point connection, only one additional user can be
added to the connection. These two components
represent two possible “flows” of the protocol,
because after establishing a point-to-point
connection, it is possible either to release a point-to-
point call or to connect a new party to it. The third
component consists of the procedures for a point-to-
point and a point-to-multipoint connection with a
restriction to one passive user. A passive user can
only be a called user. The third component includes
one calling, one called and one added user. Thus, the
relations between the first two components are
checked: the procedures of releasing a point-to-point
call with the procedures for connecting and

disconnecting an added user.
The protocol is verified by using the model-

checking feature of the Workbench. Each
component of the protocol is checked for safety and
liveness properties using the temporal CTL
(Computation Tree Logic) and the modal mu-
calculus logic.

The paper is organised in the following way.
Informal description of the model, model
architecture and message flows for successful
establishing and clearing of a multiparty call are
presented in Section 2. Formalization of the
protocol, components of the model as well as model
assumptios are desribed in Section 3. Decomposition
of the protocol and verification results are reported
in Section 4. Conclusions are given in Section 5.

2 Model Description
The procedures for establishing and clearing of a
multiparty call are defined by the User-Network
Interface (UNI 3.1) signalling protocol [1]. It is
assumed that there are three users or ATM end-
stations, each connected to the ATM network
through a user network interface (UNI). Two users
participate in a point-to-point call and a third one
can join the connection at the request of the calling
(root) user (Figure 1). The UNI has two
components: one defines the control procedures for
the user side (USI) and the other defines the control
procedures for the network side (NSI). The USI and
the NSI are assumed to be connected by means of a
reliable network and that the underlying ATM
network is also reliable and error-free.

Fig. 1: Architecture of the model

 A multiparty call is set up by first establishing a
point-to-point connection between a calling and a
called user. After this set up is complete, an

additional user (party) can be added to the
connection by an ADD_PARTY request from the
calling user. A party may be connected to or
disconnected from a multiparty call at any time after
the connection is established. A party can be added
to an existing point–to-point connection only via the
calling user who issues an ADD_PARTY message,
or be dropped from a connection at the request of
either the calling user or himself (but not by the
other user).
 A typical execution sequence for a successful
addition of a third party to an already existing
(point-to-point) call is as follows (Figure 2).

ADD PARTY (1) (2)
CALL PROCEEDING (3)
SETUP (4)
CONNECT (5) (7)
CONNECT ACKNOWLEDGE (6)
ADD PARTY ACKNOWLEDGE (8)

Fig. 2: Message flow for successful addition of a
party

The term User refers to the combination of a local
user and the USI. A calling user initiates the
addition of a new user (party) and sends an
ADD_PARTY request to the NSI1. Index 1 refers to
a calling side, index 2 to a called side and index 3 to
a added (party) side. The NSI1 forwards the request
across the network and sends a CALL_
PROCEEDING message back to the calling user.
When the NSI3 (party side) receives the request, it
forwards the request to the party as a SETUP
message. If the party responds with a CONNECT
message, the NSI3 responds with a CONNECT_
ACKNOWLEDGE message and sends a
CONNECT message to the NSI1. The NSI1 then
sends an ADD_PARTY_ACKNOWLEDGE
message to the calling user. When the calling user
receives this message, the multiparty call is
established.
 An execution sequence for dropping of a party
from an existing multiparty call by the calling user is
as follows (Figure 3).
 The calling user indicates dropping of a party out
by sending a DROP_PARTY message, which is
forwarded by the NSI1 to the NSI3. The NSI3 sends a
RELEASE message to the party. The party responds

User1 User2

User3

U N I

N
SI

1

N
SI

2

U
N

I

U
N

I

USI1 USI2
ATM

USI3

NSI3

User1 User3

USI1 USI3

N
SI

1

N
SI

3

local
user

local
user

network
(1) (2)
(3)

(4)
(5)
(6)

(7)
(8)

with a RELEASE_COMPLETE message and when
the calling user receives the DROP_PARTY_
ACKNOWLEDGE message, the clearing of the
party is done.

DROP PARTY (1) (2)
DROP PARTY ACKNOWLEDGE (3)
RELEASE (4)
RELEASE COMPLETE (5)

Fig. 3: Message flow for dropping of a party out

3 Formal Description
Formal model of establishing and clearing of a
multiparty call is written in the process algebra CCS
(Calculus of Communicating Systems) [2, 3]. The
terms in it are described by the following grammer
(1).

P :: = nil | α.P | (P + P) | (P | P) | P[f] | P \ L | proc C
 = P (1)

“.” represents the prefixing opeator; “+” is the
summation of choice operator; “|” is the parallel
composition operator; “f” is a relabelling function;
“\” is the restriction operator, and “proc = “ is used
for defining a processes.
 The model consists of 13 processes or
components which are executed simultaneously;
therefore they are connected by a parallel
compostion operator. The model is added to the
model for establishing and clearing a point-to-point
call [7]. Given that only a calling user can add a
party to the call, the model of a multiparty call must
distinguish a calling and a called user. In this case,
the model consists of three users. Two users have
the same rights and both of them can initiate the
point-to-point call and then can realise the
multiparty call. A third user is a party user and can
be only an added user. Thus, after establishing a
point-to-point call, a calling user can either clear the
call or initiate the procedures for establishing the
multiparty call. If a calling user clears a point-to-
point call, the model returns to the starting state. In
the other hand, after having added a party to the call,
either a calling or an added user can disconnect a

party.
 To establish a multiparty call, the model must
have the following components:
1. the models of the local party, local calling and

local called user,
2. the models of the USI on the party side, calling

side and called side,
3. the models of the NSI on the party side, calling

side and called side,
4. the models of UNI channels (between USI and

NSI) on the party side, calling side and called
side, and the network channels.

The components (models) of the calling and called
side are equal these users having the same rights.
 The model includes the following simplifying
assumptions:
1. The channels are formalized as one-place

buffers and all of them are reliable and error-
free,

2. The contents (information elements) of a
message are ignored,

3. The model includes point-to-point and point-to-
multipoint calls, multipoint-to-multipoint calls
are not considered and “calls” and
“connections” are equivalent,

4. The model does not include timeouts and
retransmissions.

4 Protocol Verification
This section presents some verification results.
Verification is based on two important properties of
the protocol: freedom from the deadlock and
liveness. The first property is checked for the safety
of the protocol. Checking of the second one proves
that if nothing bad happens, a connection will be
eventually established. The properties are verified
using the model-checking feature in the
Concurrency Workbench.

4.1 Model Decomposition
Due to complexity of the protocol, the model is
decomposed into the following three components:
1. procedures for establishing and clearing of a

point-to-point call,
2. procedures for establishing of a point-to-point

call with the procedures for adding and dropping
of a party,

3. procedures for establishing and clearing of a
multiparty call with a restriction to one passive
user in a point-to-point call.

The reason for protocol decomposition is a lack of
memory and time wastage, given that over 40000

User1 User3

USI1 USI3

N
SI

1

N
SI

3

local
user

local
user

network(1)
(2)

(4)

(5)(3)

states and transitions are checked.
 Decomposition of the model will be presented by
messages which are important in particular
components (key messages). The model for
establishing and clearing of a multiparty call with
the corresponding messages is shown in Figure 4.

Fig. 4: Key messages for a multiparty call

Two users establish a point-to-point call (SETUP1

and SETUP2) after which a calling user may clear
the call (RELEASE1 or RELEASE2) or initiate the
procedures for adding a party (ADD_PARTY1 or
ADD_PARTY2). Having added a party to the
connection, a calling user or a party can initiate the
procedures for dropping the party out (DROP_
PARTY1 or DROP_PARTY2 and RELEASE3).
 The first component covers all procedures for
establishing and clearing of a point-to-point call
(Figure 5). This component is chosen naturally,
because all actions for a multiparty call are
connected on point-to-point call.

Fig.5: Key messages of the first component

There are two users that can establish (SETUP) and
clear (RELEASE) point-to-point call. A party is not
included.
 The second component includes the procedures
for establishing and clearing of a multiparty call
without clearing a point-to-point connection (Figure
6). In that case, after setting up a point-to-point
connection, only a party user can be added to the
connection. These two components represent two

possible “flows” of the protocol, because after
establishing a point-to-point connection, it is
possible either to release a point-to-point call or to
add a party to the connection.

Fig.6: Key messages of the second component

There are two users that can establish (SETUP) a
point-to-point call and after that a calling user can
add (ADD_PARTY) a third user (party), but can not
clear a point-to-point call (RELEASE). After adding
the party, the procedures of dropping the party can
initiate the party out (RELEASE) or the calling user
(DROP_PARTY).
 Third component consists of the procedures for a
point-to-point and a point-to-multipoint connection
with the restriction to one passive user. In Figure 7
User2 is passive user and can be a called user only.
This component defines the interrelations between
the first two components and thus the procedures for
clearing of a point-to-point call (RELEASE) with
the procedures for establishing (ADD_PARTY) and
dropping a party out (DROP_ PARTY) are checked.

Fig.7. Key messages of the third component

There are three users: User1 is a calling user, User2

is a called (passive) user and User3 is a party. After
establishing of a point-to-point call (SETUP1), a
calling user can clear this call (RELEASE1) or add a
party to the connection (ADD_PARTY1).

SETUP2 (+)
RELEASE2 (-)
ADD PARTY2 (+)
DROP PARTY2 (+)

RELEASE3 (+)

SETUP1 (+)
RELEASE1 (-)
ADD PARTY1 (+)
DROPPARTY1 (+)

User1 User2

User3

 ATM
network

SETUP2 (-)
RELEASE2 (-)
ADD PARTY2 (-)
DROP PARTY2 (-)

RELEASE3 (+)

SETUP1 (+)
RELEASE1 (+)
ADD PARTY1 (+)
DROPPARTY1 (+)

User1 User2

User3

 ATM
network

SETUP2 (+)
RELEASE2 (+)
ADD PARTY2 (+)
DROP PARTY2 (+)

RELEASE3 (+)

SETUP1 (+)
RELEASE1 (+)
ADD PARTY1 (+)
DROPPARTY1 (+)

User1 User2

User3

 ATM
network

SETUP2 (+)
RELEASE2 (+)
ADD PARTY2 (-)
DROP PARTY2 (-)

RELEASE3 (-)

SETUP1 (+)
RELEASE1 (+)
ADD PARTY1 (-)
DROPPARTY1 (-)

User1 User2

User3

 ATM
network

4.2 Model Checking
The properties (deadlock and liveness) are specified
in a temporal logic, known as the modal mu-calculus
[6]. The syntax of mu-calculus is given by the
following grammer (2):

Φ :: = tt | ff | X | ¬ Φ | Φ \/ Φ | Φ /\ Φ | <α>Φ | [α]Φ
 | νX.Φ | µX.Φ (2)

The formula tt holds of every state, whereas the
formula ff holds of no state. The formula Φ 1 \/ Φ 2

holds of a state if either Φ 1 or Φ 2 hold of the state;
likewise Φ 1 /\ Φ 2 holds of a state if both Φ 1 and Φ 2

hold of the state. α refers to actions. <> and [] are
referred to as path modalities. The modal formula
<α>Φ holds of a state if the state has some α-
derivative at which Φ holds, and [α]Φ holds at a
state if all α-derivatives of the state satisfy Φ . ν
represents the greatest fixpoint operator (max) and µ
represents the least fixpoint operator (min).
 The mu-calculus is extended to include the CTL
(Computation Tree Logic) operators [6]. The CTL
formulas and corresponding mu-calculus
translations that were used in the verification (3, 4):

AG prop max X = prop /\ [-{}]X (3)

A (prop1 U prop2), min X prop2 \/ (prop1 /\ [-{}]X
/\ <-{}>tt) (4)

Intuitively, A means that the property should hold
for all computations, G means “always” and U
means “until”.
 Each component of the protocol is checked for
safety (deadlock freedom) and liveness properties.
The first property says that the protocol is free of
deadlocks. The following mu-calculus formula
expresses this property (5):

can_deadlock = min X = [-{}]ff \/ <-{}>X (5)

 The second property requires introducing some
new visible actions in the model. These actions are
used for checking of the model behaviour and the
model progress as expected. The new models for the
local User1 and User2 (these models are the same)
and added User3 are shown in Figure 8 and Figure 9.
The visible actions are bolded.
 Each component includes only its visible actions,
characteristic for this component, which are
interesting for checking. In this case, for each
component some corresponding property is being
checked. With respect to that, it is defined a macro
(6) with parameters a, p1 and p2 which says that on

all paths after an action a eventually a state
satisfying p2 occurs and until then every state
satisfies p1.

proc NullUser1 =
'setup_req1.setup_request1.(setup_conf_USI1.
NullAddPParty1

+ setup_err_USI1.setup_error1.NullUser1)
+ setup_ind_USI1.('setup_resp1.setup_response1.
ActiveUser1

+ 'setup_err1.setup_error1.NullUser1)

proc ActiveUser1 =
 rel_ind_USI1.'rel_resp1.NullUser1

proc NullAddParty1 =
'add_req1.add_request1.(add_conf_USI1.
add_confirmation1.ActiveAddParty1

+ add_err_USI1.add_error1.NullAddParty1)
+ rel_req1.release_request1.rel_conf_USI1.
NullUser1

proc ActiveAddParty1=
'drop_req1.drop_request1.drop_conf_USI1.
NullAddParty1

+ drop_ind_USI1.'drop_resp1.NullAddParty1

Fig. 8: Model of a local user (User1 and User2)

proc NullParty3 =
setup_ind_USI3.('setup_resp3.setup_response3.
ActiveParty3

+ 'setup_err3.setup_error3.PocDodKor3)

proc ActiveParty3 =
 rel_ind_USI3.'rel_resp3.NullParty3

+ 'rel_req3.release_request3.rel_conf_USI3.
PocDodKor3

Fig. 9: Model of a party (User3)

liveness (a, p1, p2) = AG ([a] (A(p1 U p2))) (6)

 In the first component, a liveness of the
procedures for establishing (7) and clearing (8) of a
point-to-point call are checked.

prop liveness_setup =
liveness (setup_request1, ([setup_error1]ff /\
[setup_error2]ff), <setup_response2>tt) (7)

prop liveness_release =
liveness (setup_response2, ([setup_request1]ff /\
[setup_request2]ff), <release_request1>tt) (8)

In the second component, liveness of the procedures
for adding (9) and dropping (10) of a party and a
liveness of the procedure for establishing of a point-
to-point call (7) too are checked.
prop liveness_add =
liveness (add_request1, ([add_error1]ff /\
[setup_error3]ff), <setup_response3>tt) (9)

prop liveness_drop =
liveness (add__confirmation1, ([add_request1]ff U,
<drop_request1>tt \/ <release_request3>tt (10)

In addition checking (7) and (8), the third
component includes checking of liveness when a
calling user can concomitantly add a party or release
a point-to-point call (11) (interrelation between first
two components).

prop liveness_add_release =
liveness (setup_response2, ([add_error1]ff /\
[release_request1]ff), <setup_response3>tt) (11)

For example, the formula (9) says that if after
add_request1 nothing bad happens (i.e. events
add_error1 and setup_error3 do not occur), a
setup_response3 takes place.
 For the last property the model had 8833 states
and 30186 transitions. Verification of the properties
took about 3 minutes on a SUN Ultra 1 workstation
with 256 Mbytes of memory.

5 Conclusion
Formal specification and verification of the
multiparty call in ATM UNI signalling protocol are
reported. The specification is written in the CCS
process algebra and verification is done by using
model-checking feature of the Concurrency
Workbench. Due to complexity of the protocol, the
model is decomposed into three components and
each is checked for safety and liveness properties
using temporal logic CTL and modal mu-calculus
logic.
 In the protocol design, there was a constant
interaction between the modelling and verification
phases. Therefore, in reality, the border between
these two phases is being lost.
 Further studies would be a more detailed
modelling including timeouts and retransmissions,
modelling of more complex protocols with more
users, possibility of negotiations and mobile agents.

References:
[1] The ATM Forum, ATM User-Network Interface

(UNI) Specification, Version 3.1, Prentice-Hall
International, 1995.

[2] Milner, R., A Calculus of Communicating
Systems, Springer-Verlag, 1980.

[3] Milner, R., Communication and Concurrency,
Prentice-Hall International, 1989.

[4] Cleaveland, R., Parrow, J., Steffen, B., The
Concurrency Workbench: A Semantics-Based
Tool for the Verification of Concurrent Systems,
ACM Transactions on Programming Languages
and Systems, January 1993., Vol. 15, No. 1, pp.
36-72.

[5] Cleaveland, R., Sims, S. T., Generic Tools for
Verifying Concurrent Systems, Proceedings of
the 2nd International Workshop on Applied
Formal Methods in System Design, Zagreb, June
1997., pp. 3-8.

[6] Cleaveland, R., Sims, S., The Concurrency
Workbench of North Carolina, User’s Manual,
September 1996., North Carolina.

[7] Bhat, G., Cleaveland, R., “Verifying the ATM
UNI 3.1 Signalling Protocol, Personal
communication, 1997.

[8] Holzmann, G. J., Protocol Design: Redefining
the State of the Art, IEEE Software, January
1992, pp. 17-22.

[9] Lin, F. J., Liu, M. T., Protocol Validation for
Large-Scale Applications, IEEE Software,
January 1992, pp. 23-26.

[10] Hailpern, B. T., Owicki, S. S., Modular
Verification of Computer Communication
Protocols, IEEE Transactions on
Communications, January 1983., Vol. 31, No. 1,
pp. 56-68.

