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1 Intr oduction

Identification in the frequency domain often
involves the estimation of the process frequency
response over an appropriate frequency range
followed by the estimation of the model parameters.
This paper focuses on delayed model parameter
estimation from an appropriate number of
arbitrarily specified points on the process frequency
response; the frequency domain appears to be
intuitively appropriate for the estimation of the
delay (in particular), as the delay affects the process
phase response, but not its magnitude response.
Graphical [1-3], analytical [4-6] and least squares
[3, 7-9] approaches have all been considered for the
estimation problem. Lilja [8], for example,
estimates the non-delay parameters of a first order
lag plus time delay (FOLPD) process model by
minimising an appropriate cost function; the delay is
estimated separately by determining the global
minimum of a non-unimodal cost function using a
modified Newton-Raphson gradient algorithm.
Many such approaches have the disadvantage of
separately estimating the non-delay parameters and
the delay; this leads to biased estimation of the delay
or difficulty in achieving reliable convergence of the
delay estimate to its optimum value.

These diff iculties motivate an investigation
of the possibili ty of estimating the non-delay and
delay parameters together. A two stage approach,
combining an analytical approach and a gradient
approach, will be defined for the estimation of the
parameters of an arbitrary order delayed model. The
analytical methods are based on direct calculation of

the parameters from the frequency response, using
simultaneous equations. These estimates are
updated to more accurate model parameters using a
gradient algorithm. This two stage approach will
rely on the analytical estimates being suff iciently
accurate so that unimodali ty of the cost function
(which is a function of the sum of the squares of the
sampled errors between the process and model
frequency responses) with respect to the parameter
estimates, exists from the estimates determined
analytically to the final model parameter estimates.

The analytical formulae to estimate the
model parameters are developed in Section 2. The
gradient approach to estimating the parameters,
from the initial estimates of the parameters, is
developed in Section 3. Implementation issues and
simulation results are discussed in Sections 4 and 5.
In Section 6, conclusions are drawn and future work
is outlined.

2 Analytical Estimation of the Model
Parameters

The estimates of the parameters of an vth

order delayed model using an analytical approach
are obtained by calculating the non-delay
parameters from an appropriate number of
simultaneous equations, using data points on the
magnitude response; the delay may then be
calculated from one data point on the phase
response. The transfer function of the vth  order
delayed model is defined as follows (with v u≥ )
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The numerator and denominator terms of the
frequency transfer function, G jm( )ω , may be

written as
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Therefore, from equations (3) and (4), the
magnitudes of the numerator and denominator terms
may be written as
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Now, G jm( )ω 2
 may be written as
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and with j and k even, [ ] [ ]j u k v∈ ∈0 2, , , . A

minimum of u+v+1 data points on the magnitude
response are required to estimate the parameters. If
just u+v+1 data points are taken, the vector of
magnitude response values squared is
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with G jp( )ω  = process magnitude at frequency ω .

Then, from equations (7) and (12), it may be
deduced that
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with A given in Appendix 1. The non-delay
parameters of the model may subsequently be
calculated from equations (8) and (9). The model
delay may be calculated (using equations (1), (3)
and (4)) to be
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with φ ωp j( )  = process phase at frequency ω. A less



computationally intense alternative to the procedure
defined is to estimate the parameters of a vth  order
model, with no numerator parameters, and a
repeated pole [4]. The lower computational intensity
of this procedure is traded off against poorer
accuracy of the parameters estimated.

3 Gradient estimation of the model
parameters

An alternative parameter vector of the vth  order
model (to equation (2)) is
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The phase contributions of the numerator and
denominator terms, respectively, may be calculated,
from G jm( )ω , using equation (15), to be
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If u+v+1 frequency response data points are taken
for parameter estimation, the vector of frequency
response values is
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The cost function, J, is formulated as
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The normalising matrix, P, is used to increase the
range of parameters over which unimodality of the
cost function exists. The cost function, J (using
equations (19) to (22)) may be calculated to be

J
N j

D j
G j

G j

m n

m n
p n

p nn

u v

= −




















=

+ +

∑05
1

2

1

1

.
( )

( )
( )

( )

ω
ω

ω
ω

  

+ + − −










=

+ +

∑05
1 2

1

1

. ( ( ) ( ) ( ))
ω

φ ω φ ω ω τ φ ω
n

m
N

n m
D

n n m p n
n

u v

j j j

(23)

Then, the updated estimate of the parameters at
sample (k+1) may be calculated from the estimates
at sample k, using the gradient algorithm
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with µ  = learning rate. The initial values of the

parameter estimates are determined using the
analytical technique. If N jm( )ω  (equation (5)) is

formulated as
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with b m0 1= , then it is clear from equations (23) and

(25) that the cost function is quadratic in the gain
estimate, K m  and the delay estimate, τm . The cost

function is not, however, quadratic in the estimates
of the other numerator and denominator parameter
values, as may be deduced from equations (6), (16),
(17), (23) and (25). The cost function must be
unimodal with respect to each of these parameter
values (allowing the delay estimate, gain estimate
and other parameter estimates to vary), and must
have its minimum value when the appropriate



equivalent process parameter equals the model
parameter, if convergence of the model parameters
to the equivalent process parameters is to be
guaranteed. An equivalent condition is that the first
partial derivative of the cost function with respect to
each of the parameter values may be equal to zero
once only, or that the second partial derivative of the
cost function with respect to each of the parameter
values must always be greater than zero (with the
first partial derivative of the cost function with
respect to each of the parameter values being equal
to zero at appropriate parameter values). These first
and second partial derivative functions may be
calculated analytically in a straightforward manner.

4. Model Structure Selection

One approach to determine the model order
is to calculate the slope of the process magnitude
versus frequency curve at high frequencies, though
experimentally obtained frequency response data are
seldom accurate enough to exhibit a slope more
negative than -40 dB/decade [3]. Alternatively, the
parameters of an arbitrary order model could be
estimated; the most appropriate model order could
be determined by calculating where the cost
function, formed from the optimum parameters
estimated (using the gradient method) as the model
order is increased, levels out.  This procedure is
computationally intensive. A variation of the above
strategy that is less computationally intensive would
be to calculate the cost function based on the initial
model parameter estimates (calculated using an
analytical approach). A repeated pole model would
simplify the calculations further.

Simulation results have revealed that
convergence of the parameters to their optimum
values using gradient methods is not always
facilitated for higher order delayed process models
(such as third order delayed models), due to cost
function non-unimodality. Therefore, a strategy for
the estimation of the parameters of an appropriate
delayed model, which ensures cost function
unimodality, is summarised in Figure 1.

Fig. 1: Flowchart summarising the algorithm for
model order and parameter estimation

One representative simulation result is
included to demonstrate the applicability of the
method. The results are determined when either
+10% or -10% was added to the magnitude and
phase values of the process frequency response (to
simulate the effect of uncertain data); the parameter
estimates are plotted against sample number. Ten
values of the process frequency response, spaced
equally between phase lags of 00  to 2700  were used

  START

Calculate cost function for model orders from k=1
to a maximum possible model order,

kmax; estimate the parameters analytically

Is cost function minimised from
k=1 to k k= max ?

Calculate ratio of cost function at k = 1 to cost
function at k = 2

Is ratio less than 1.2?
(heuristic test)

No

No

k=k+1

Yes

Yes

Model order estimate, kest  obtained

Calculate analytical values of the model
parameters

Calculate second partial derivatives
of the cost function with respect to
all denominator parameter values

Are any of the second
partial derivatives less

than zero?

No

Use the gradient technique to refine
the model parameter estimates

STOP

k kest est= − 1

Yes



in the simulation; in the analytical stage, average
values of the parameters are calculated over a
number of points of the frequency response (to
improve the robustness of the estimates).
Simulation result: G e s sp

s= + +−2 1 4 5 4 51 2.0 . . . Model

order estimate: 2.  The model parameters determined
analytically are Km = 2 24. , a1m 536= . , a m2 4 98= .

and τm = 104. . These parameters are subsequently

updated using the gradient algorithm (Figures 2 to
5). Time domain and frequency domain fitting is
shown in Figures 6 and 7.

    Fig. 2: Km − =µ 01.

Fig. 3: a1m 01− =µ .

Fig. 4: a m2 01− =µ .

Fig. 5: τ µm − = 0 01.

 Fig. 6: Unit step response of the process and model

Fig. 7: Polar plot of the process and model

The full panorama of simulation results
reveals that the estimation strategy summarised in
the flowchart is a reasonable guide to the choice of
an appropriate, sometimes reduced order, delayed
model.

5 Other Issues

1.  A recursive scheme to estimate model
parameters as each data point became available
has also been developed. For example, if the

Sample Number

Sample Number

Sample Number



parameters of a FOLPD model are to be
estimated, a minimum of two data points are
required to estimate the parameters analytically;
the gradient technique appropriately updates the
parameter estimates, as more data points
became available. A flowchart for the recursive
estimation algorithm and appropriate simulation
results will be presented at the conference.

2.  Appropriate estimates of the learning rate, µ ,

(equation (22)) have been found in simulation.
The best setting of this value to allow rapid
convergence of the parameter estimates appears
to be related to the process order and to whether
the process is underdamped or overdamped.
Unfortunately, it is very possible for the model
parameters to converge to non-optimum values
if the value of the learning rate is too large. A
trial and error procedure to choose the learning
rate was the only satisfactory method developed;
further work will consider the development of an
adaptive learning rate.

3.  The normalising used in the cost function
(equation (19)) has the effect of weighting the
cost function more equally over a wide range of
frequencies. This facilitates the convergence of
the model parameters to their optimum values,
using the gradient method, over a wider range of
initial model parameters than if no cost function
weighting is used.

6 Conclusions

1.  The two-stage method defined has successfully
allowed the estimation of the parameters of
SISO delayed process models from an
appropriate number of arbitrarily specified
points on the process frequency response in a
wide variety of simulations.

2.  It has been shown in simulation that
convergence of the initial model parameter
estimates, calculated using the analytical
approach, to the optimum model parameter
estimates calculated using the gradient
approach, is possible if the model parameters
are sufficiently close to the optimum
parameters. An analytical proof of the
convergence properties is the subject of future
work. If the second partial derivative of the cost
function with respect to the denominator
parameter value(s) is less than zero, then a
simple strategy that involves the commencement
of iteration at different values of the parameter
estimates could be employed to increase the

probability that the parameters estimated using
the gradient approach will correspond to the
global minimum of the cost function. Similar
methods based on this multiple model estimation
technique have been well explored in the time
domain.

3.  An arbitrary order delayed model may be fitted
to the data. Alternatively, a lower order model,
such as a FOLPD model, may be estimated. The
trade-off of relatively poor fitting of the original
process (by estimating a FOLPD model) may be
balanced by an increase in the parameter space
for which the cost function is unimodal, faster
convergence of the parameter estimates to their
final values and a smaller computational burden.
Of course, the acceptability of the fitting
depends on the use to which the process model
is applied. It appears reasonable that, for many
applications, the phase lag range taken of
0 270o oto  will be the maximum range over

which good fitting will be required. This is true
for many compensation strategies (e.g. PID
controller design); in addition, most processes,
being low pass in nature, will have a small
magnitude at larger phase lags, making the
measurement problem greater. These and the
other considerations mentioned provide a cogent
argument for estimating the parameters of a low
order process model (such as a FOLPD model).
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Appendix 1: The matrix in equation (13) is
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