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Abstract:-This paper discusses the estimation of the parameters (including the time delay) of a generalised single
input, single output (SISO) process modd from an appropriate number of arbitrarily specified points on the
process frequercy response. The method involves combining an analytical approach with a least sguares
approach using agradientalgorithm, to provide accurate and robust estimatesof the parameters.
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1 Intr oduction

Idertification in the frequercy damain often
involves the etimation of the process frequercy
response over an appropriate frequercy range
followed by the etimation of the model parameters.
This paper focuses on @dayed modd parameter
estimation from an appropriate number of
arbitrarily specified points onthe process frequency
response; the frequercy damain appears to be
intuitively appopriate for the estmaton of the
dday (in particular), as the delay affects the process
phase response, but not its magnitude response.
Graphical [1-3], analytical [4-6] and least squares
[3, 7-9] approacheshave all beenconsideredfor the
estimation problem. Liljla [8], for example,
estimates the nondely parameters of afirst order
lag plus time dday (FOLPD) process modd by
minimising an appropriate cost function; the dedy is
estimated separately by ddermining the global
minimum of a nonunimodal cost function using a
modified Newton-Raphson gadient algorithm.
Many such approaches lave the disadvantage of
separately estimating the nondelby parameters and
the dday; thisleads o biased esimation of the dday
or difficulty in achieving reliable convergence of the
dday estimate to its optimum value.

These difficulties motivate an investigation
of the posgbility of estimating the nordeby and
delby parameters togehe. A two stage approach,
combining an analytical approach and a gradient
approach, will be ddined for the etimation of the
parameters of an arbitrary order delayed model. The
analytical methodsare based on diect calculation of

the parameters from the frequercy response, using
simultaneaus equations. These etimates are
updated to more accurate mode parameters using a
gradient algorithm. This two stage approach will
rely on the analytical estimates being sufficiently
acaurate so that unimodality of the cost function
(which is afunction of the sum of the squares ofthe
sampled errors between the process and model
frequency responses) with respect to the parameter
estimates, exists from the estimates determined
analytically to thefinal modd parameter estimates.

The analytical formulae to estmate the
model parameters are develped in Section 2. The
gradient appoach to estimating the parameters,
from the initial estimates of the parameters, is
develged in Section 3. Implemertation issues and
simulation results are discussd in Sections 4and 5.
In Section 6, conclusionsare dawn and future work
is autlined.

2 Analytical Estimation of the M odel
Parameters

The estimates of the paameters of an v"
order dehyed model using an analytical approach
are obtained by calculating the nondday
parameters from an appropriate rumber of
simultaneaiss equations, using data points on the
magnitude response; the dety may then be
caculated from one dta point on the phase
response. The transfer function of the v order
delbyedmodel isdefinedas follows (with v >u)
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minimum of u+v+1 data points on the magnitude
response are required to estimate the parameters. If
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computationally intense alternative to the procedure
defined is to estimate the parameters af"aorder
model, with no numerator parameters, and a
repeated pole [4]. The lower computational intensity
of this procedure is traded off against poorer
accuracy of the parameters estimated.

3 Gradient estimation of the model
parameters

An alternative parameter vector of thd' order
model (to equation (2)) is
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The phase contributions of the numerator and
denominator terms, respectively, may be calculated,
from G, (jw), using equation (15), to be
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If u+v+1 frequency response data points are taken
for parameter estimation, the vector of frequency
response values is
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The cost function, J, is formulated as
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The normalising matrix, P, is used to increase the
range of parameters over which unimodality of the
cost function exists. The cost function, J (using
equations (19) to (22)) may be calculated to be
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Then, the updated estimate of the parameters at
sample (k+1) may be calculated from the estimates
at sample k, using the gradient algorithm
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with u = learning rate. The initial values of the
parameter estimates are determined using the
analytical technique. N, (jw)| (equation (5)) is
formulated as
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with by, =1, then it is clear from equations (23) and

(25) that the cost function is quadratic in the gain
estimate,K,,, and the delay estimate, . The cost

function is not, however, quadratic in the estimates
of the other numerator and denominator parameter
values, as may be deduced from equations (6), (16),
(A7), (23) and (25). The cost function must be

unimodal with respect to each of these parameter
values (allowing the delay estimate, gain estimate
and other parameter estimates to vary), and must
have its minimum value when the appropriate



equivalent process parameter equals the model
parameter, if convergence of the model parameters
to the equivalent process parameters is to be
guaranteed. An equivalent condition is that the first
partial derivative of the cost function with respect to
each of the parameter values may be equal to zero
once only, or that the second partial derivative of the
cost function with respect to each of the parameter
values must always be greater than zero (with the
first partial derivative of the cost function with
respect to each of the parameter values being equal
to zero at appropriate parameter values). These first
and second partial derivative functions may be
calculated analytically in a straightforward manner.

4. Model Structure Selection

One approach to determine the model order
is to calculate the slope of the process magnitude
versus frequency curve at high frequencies, though
experimentally obtained frequency response data are
seldom accurate enough to exhibit a slope more
negative than -40 dB/decade [3]. Alternatively, the
parameters of an arbitrary order model could be
estimated; the most appropriate model order could
be determined by calculating where the cost
function, formed from the optimum parameters
estimated (using the gradient method) as the model
order is increased, levels out. This procedure is
computationally intensive. A variation of the above
strategy that is less computationally intensive would
be to calculate the cost function based on the initial
model parameter estimates (calculated using an
analytical approach). A repeated pole model would
simplify the calculations further.

Simulation results have revealed that
convergence of the parameters to their optimum
values using gradient methods is not always
facilitated for higher order delayed process models
(such as third order delayed models), due to cost
function non-unimodality. Therefore, a strategy for
the estimation of the parameters of an appropriate
delayed model, which ensures cost function
unimodality, is summarised in Figure 1.

Fig. 1: Flowchart summarising the algorithm for
model order and parameter estimation
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One representative simulation result is
included to demonstrate the applicability of the
method. The results are determined when either
+10% or -10% was added to the magnitude and
phase values of the process frequency response (to
simulate the effect of uncertain data); the parameter
estimates are plotted against sample number. Ten
values of the process frequency response, spaced
equally between phase lags®f to 270 were used



in the simulation; in the analytical stage, average

values of the parameters are calculated over a

number of points of the frequency response (to
improve the robustness of the estimates).
Simulation result:G, = 26**/1+ 45s+ 45§. Model

order estimate: 2. The model parameters determined

analytically are K, =224, a,, =536, a,,=4.98
and 1, =104. These parameters are subsequently

updated using the gradient algorithm (Figures 2 to
5). Time domain and frequency domain fitting is

shown in Figures 6 and 7.
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Fig. 3:a,,-1 =01
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Fig. 4:a,,-u =01

Fig. 5:1,,—-u =001
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Fig. 6: Unit step respoinse oi the process and model

Fig. 7: Polar plot of the process and model

The full panorama of simulation results
reveals that the estimation strategy summarised in
the flowchart is a reasonable guide to the choice of

an appropriate, sometimes reduced order, delayed
model.

5 Other Issues

1. A recursive scheme to estimate model
parameters as each data point became available
has also been developed. For example, if the



parameters of a FOLPD model are to be
estimated, a minimum of two data points are
required to estimate the parameters analytically;
the gradient technigue appropriately updates the
parameter estimates, as more data points
became available. A flowchart for the recursive

probability that the parameters estimated using
the gradient approach will correspond to the
global minimum of the cost function. Similar
methods based on this multiple model estimation
techniqgue have been well explored in the time
domain.

estimation algorithm and appropriate simulation 3. An arbitrary order delayed model may be fitted
results will be presented at the conference. to the data. Alternatively, a lower order model,
Appropriate estimates of the learning rate, such as a FOLPD model, may be estimated. The
(equation (22)) have been found in simulation. trade-off of relatively poor fitting of the original
The best setting of this value to allow rapid process (by estimating a FOLPD model) may be
convergence of the parameter estimates appears ~ balanced by an increase in the parameter space
to be related to the process order and to whether for which the cost function is unimodal, faster
the process is underdamped or overdamped. convergence of the parameter estimates to their
Unfortunately, it is very possible for the model final values and a smaller computational burden.
parameters to converge to non-optimum values Of course, the acceptability of the fitting
if the value of the learning rate is too large. A depends on the use to which the process model
trial and error procedure to choose the learning is applied. It appears reasonable that, for many
rate was the only satisfactory method developed:; applications, the phase lag range taken of
further work will consider the development of an 0° to 270 will be the maximum range over
adaptive learning rate. which good fitting will be required. This is true
The normalising used in the cost function for many compensation strategies (e.g. PID
(equation (19)) has the effect of weighting the controller design); in addition, most processes,
cost function more equally over a wide range of being low pass in nature, will have a small
frequencies. This facilitates the convergence of magnitude at larger phase lags, making the
the model parameters to their optimum values, measurement problem greater. These and the
using the gradient method, over a wider range of other considerations mentioned provide a cogent
initial model parameters than if no cost function argument for estimating the parameters of a low
weighting is used. order process model (such as a FOLPD model).
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Appendix 1: The matrix in equation (13) is
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