
Data description language FlexT : flexible types for
description of static data.

ALEXEI HMELNOV, STANISLAV VASSILYEV
Institute of System Dynamics and Control Theory

Russian Academy of Sciences
134 Lermontov St, Irkutsk, 664033

RUSSIA

Abstract: - The problem of binary data format specification is considered. This problem is further limited to
simpler subproblems. First, the concept of specification of data interpretation as opposed to specification of
data modification is introduced, i.e. we shall concentrate on the interpretation of already existing static data,
and will not take into account different aspects of memory allocation, correct sequence of data elements and so
on. Next, we shall consider the case of data type identification, which is a special and most basic kind of data
interpretation. Specification of the data type identification for some data format enables to identify every bit of
data of this format as a part of representation of some data element of definite type.

The language of Flexible Types FlexT was developed for description of the data type identification. It uses
rather simple extensions of the set of type constructors traditional to common procedural languages. These
extensions are very efficient for the problem under consideration.

On the one hand, the use of specification when developing a program enables to increase the safety of the
program due to increase of the level of abstraction of the specified program part. On the other hand, the
specification of format of some data enables to increase the reliability and safety of processing of this data,
because it makes them transparent. I.e. specification of data format enables to consider the data not as a ''black
box" - a sequence of bytes of unknown purpose, but as a collection of data elements of definite types, which
makes it possible to control the contents of the data. We can also consider a machine code as a specific type of
data and describe file formats like that of EXE and OBJ files.

Key-Words: - binary format, formal specification, data format specification, specification of data interpretation,
specification of data modification, data type identification. CSCC'99 Proceedings, Pages:1371-1376

1 Introduction
During the past few decades, which constitute the
history of computers, vast amount of information
was accumulated in electronic form, and to store and
transfer these data almost as many data
representation formats was developed. The number
of formats used for representation of data of some
class, e.g. raster images, may run into dozens or even
hundreds.

The information about data formats can be
represented by natural language descriptions, which
very often contain errors or ambiguities. It can also
be encoded into some libraries or conversion
programs designed for some definite way of data
processing which, as a rule, differs from the required
one. All the information about the format is
presented in its description or in the source code of
the library but in implicit form: in phrases of natural
language or in statements of the program written in

some definite programming language for some
definite way of data processing.

So the programmer often has to write his own
code for data input/output. The most essential
disadvantage of this approach is not that it requires
repetition of work already performed many times
before, but that it may cause programming errors as a
result of inattention or misunderstanding of
specification.

How can this situation be improved?

1.1 Universal exchange formats
In the fields, where some traditional set of universal
enough exchange formats has not been established
yet, main efforts are focused on the development of
such a format. An example of such a field is
Geographic Information Systems (GIS) and Spatial
Data Transfer Standard (SDTS). It was supposed that
all programs were to support the universal exchange
format, which would solve the problem of data

exchange. The example of SDTS demonstrates that
such a universal format will necessarily be very
complicated, because it should support all the
capabilities of all the other existing formats. Thus it
will be rather easy to store data into this format,
because it will require to use only limited subset of
its capabilities corresponding to the capabilities
implemented in the program under development, but
it will be much more difficult to read data from this
format, because the data could be written according
to capabilities of another program, which could have
no correspondence in the program under
consideration.

Another much more serious complication is that it
is impossible to predict in advance the evolution of
the considered field and it would be necessary to
revise in the future even the most universal by now
format. Yet another essential disadvantage of
universal exchange formats is that they are as a rule
very cumbersome and ineffective in comparison with
specialized ones and generate too large files. A good
illustration of this statement is PostScript format.

1.2 Self-documented formats
To solve the problem of extending capabilities of
exchange format this approach suggests to include
into data file all needed for its interpretation
metainformation. Thus to read such a file a program
should be able to use this metainformation for
interpreting, i.e. loading into internal representation,
that part of data for processing of which it was
designed. For example this approach was offered for
exchange of results of physical experiments.

The disadvantages of self-documented formats
are that it requires converters to transfer already
existing files into this formats and also that the
metainformation is duplicated in each self-
documented file even if the data in these files are of
the same kind.

Fundamentally, this approach can be considered
as a special subclass of universal exchange formats.
For example the already mentioned PostScript
format may be placed into this subclass: it contains
the header with definitions of functions and fonts,
which are used for description of the text image
itself, with the header occupying considerable and,
sometimes, most part of the file and this header been
duplicated with no change over all the files created
by the same text editor.

1.3 Data description languages
To get rid of the above-mentioned disadvantages of
the files containing metainformation it would be
quite natural to isolate this metainformation into

separate file. In this case to support yet unknown and
may be existing long before format it would be
enough to supply the file describing this format as a
specimen of the data of the class for processing
which the program was designed.

The problem here is how to develop such a data
specification language, which can support
description of some class of file formats. It is
desirable to make this class wide enough, so some
specific program would be able to use its specific
subset. But it should be taken into account that the
more universal will be this language the more
complicated it will be. Good balance here is
necessary for this language to be a specification
language and not just another programming
language.

2 Specification languages
According to their data processing capabilities we
can distinguish two levels of data specification:
specification of data interpretation and specification
of data modification.

2.1 The specification of data interpretation
A language for specification of data interpretation
should allow to describe easily the interpretation of
arbitrary within some limits data class.

The term interpretation is not considered here to
mean just a conversion of all data into some specific
format, but it denotes the definition of observer
functions for extraction from the described data the
values of attributes of the data class to which the data
belong according to this specification. For example,
a specification of a raster image file format should
enable to extract from such a file information about
the number of images in the file, the dimensions of
these images (width and height) and about the colour
of each pixel. To increase efficiency of this
specification it can be formulated in terms of some
less abstract class, for which already exists a
specification relating this subclass to the abstract
class of interest.

2.2 The specification of data modification
A language for specification of data modification
should allow to define not only observer functions
but also constructor functions, which specify how to
create new data elements with definite attributes. In
this case we have to consider additional details, such
as memory allocation, order of data element
generation, data elements alignment and so on.

Ideally, the specification of data modification
should provide all the necessary information to

transfer data into any other already described format,
including that of the program internal representation.
The specification language itself should not be very
time efficient. To increase efficiency automatic code
generation according to specifications of the source
and the target formats could be used. Thus to read
data of some format into internal representation a
special reading procedure could be generated which
optimizes data transfer by avoiding generation of
intermediate representation.

This level of specification languages will not be
considered subsequently - it was mentioned here as a
possible direction of further research in the field of
data format specification.

2.3 Data type identification as a basic data
type interpretation

As a basic interpretation which can be used for
description of any data format we suggest such an
interpretation, which assign type to each data
element - i.e. which performs the data type
identification. Such an interpretation is a basic one
and it constitutes the lowest level of the hierarchy of
interpretations, because, when using some data
element in some interpretation, it will be necessary
to specify the data type of this element.

The class of data to which the raw data are
mapped by the interpretation of data type
identification is a set of the interrelated data
elements. Each data element is characterized by its
position (address and size) and its type. Data element
can contain references (pointers) to other data
elements, this property makes it unnatural to use for
specification some kind of BNF extension. The size
and the type of data element are interrelated: one of
these properties defines the other, the direction of
this relation depends on the data element. The data
elements can be complex, in this case it is possible to
distinguish inside of this data element data elements
of smaller size. The data type identification can be
incomplete. Such an interpretation contains data
elements of indefinite type, or we can consider such
data elements as belonging to special type - raw
data.

3 The suggested approach
This paper considers the data specification language
FlexT (Flexible Types), which enables to describe
the interpretation of static data, primarily in the form
of data type identification. This language is used for
data description in the disassembler/viewer of
various file formats BinView, and also in the
disassembler of the program Portable EXE

Explorer for viewing the contents of the 32-bit
executable files of Windows 95/NT (the Portable
Executable format).

By static data types we will understand the data
types, which are analogous to traditional ones of
procedural programming languages. The distinctive
feature of these data types is that the size of data
element of such a type and the internal positions of
its constituent parts are defined on the stage of
compiling and don't depend on specific data. In
procedural programming languages, at least in those,
which are really in use at the present time, the
composite data types can contain only static parts.

The size of data element of dynamic type and the
positions of its constituents may depend on specific
data. We'll use subsequently the term "dynamic" to
denote dependence on the data element position and
contents. Examples of dynamic data type in the
traditional procedural languages are string constants
both Pascal and ASCIIZ: to determine the size of
such a constant it is required to check the first byte
for Pascal strings and to find the last zero byte for
ASCIIZ strings.

It is apparent that dynamic modifiable data
types [1] can not be used as types of variables,
because assignment of new value to such a variable
or to some of its parts may cause change of the size
of this variable. For the fields of records of variable
size in traditional languages such as strings or variant
records the memory is allocated to maximum
possible extent. Meanwhile, as to static data, which
are read only for the program, for their encoding can
be used very sophisticated techniques, for example,
using assembler macros.

An example of static data in code is the Run Time
Type Information (RTTI) of Delphi programs:

PTypeInfo = ^TTypeInfo;
TTypeInfo = record
 Kind: TTypeKind;
 Name: ShortString;
 {TypeData: TTypeData}
end;
PTypeData = ^TTypeData;
TTypeData = packed record
 case TTypeKind of

(Excerpt from TypeInfo.pas [2]).
The comment in the record TTypeInfo denotes that
the field TypeData is placed immediately after the
last symbol of the string field Name, the size of
which depends on the length of the name of specific
type. Because the offset of the field TypeData
depends on specific data - the name of the type, this
structure can not be immediately represented in
Pascal - it is required to write a special code to
access the field (excerpt from the same file):

function GetTypeData(TypeInfo:
PTypeInfo):PTypeData;assembler;

asm
 {-> EAX Pointer to type info}
 {<- EAX Pointer to type data}
 {it's really just to skip the kind and the name}
 XOR EDX,EDX
 MOV DL,[EAX].TTypeInfo.Name.Byte[0]
 LEA EAX,[EAX].TTypeInfo.Name[EDX+1]
end;

The same difficulties are experienced by all the
authors of data format descriptions when trying to
describe some kind of dynamic data element using
for instance the C language.

The reason for all this problems is that for
specification of data formats were used languages
designed for specification of types of variables. But
if we'll not limit the constructors of data types by the
constraints for the types of variables, it is possible to
support in a natural manner description of more
sophisticated data encoding schemes, for example,
like when one field of record contains the number of
elements of array which is another field of the
record.

4 Extension of the set of data type
constructors

It is possible to split any physical data into compact
data blocks. Each such a block is characterized by its
address, size and interpretation. A compound
compact block can be split into smaller compact
blocks. The main ways of combining data items can
be expressed by three basic type constructors of
compound data types: record, array and variant.

Let us consider now in greater detail the
suggested extensions of the type definition
technique.

1) Components of variable size
The language supports record fields and array
elements of variable size.

2) Expressions, properties and parameters of
types

Data types are characterized by a set of parameters,
for instance, the size and the number of elements for
array or the value of the case selector for variant.
The values of parameters can be specified by
expressions, which bind these values to the values of
other fields of complex data type and/or its
parameters.

3) The block of statements

Every data type definition, except the type call, can
be followed by several blocks with additional
information. The beginning of each additional block
is marked by the ':' sign. Among them the block of
statements contains in square brackets a series of
comma separated statements about the values of the
properties of the type and of the parameters of its
constituents, which were not specified in the
constructors' calls.

4) The type calls
The type calls with substitution of actual parameters
in place of formal parameters is also considered as a
special type constructor. In the type call the
expressions of the actual parameters can be related to
the formal ones by position or by name, it is similar
to the calling convention for the methods of COM
interfaces. The parameter passing by name is used
when, for example, it depends on the value of the
field, which was not defined by the moment of
reading the type call.

5) Record
It consists of a fixed number of fields. It can contain
fields of variable size, with the position of the next
field been determined by the position and the size of
the previous one.

6) Variant
The type of this element is determined by the value
of its parameter - the selected case. By now we
support integer and string selector values.

7) Array
It consists of variable number of elements of same
type. The size of array can be limited either by
specifying the number of its elements or by
specifying the size itself or by stop condition, which
should be satisfied for the last array element (as for
ASCIIZ string).

8) Abstract data types.
A data element can serve as a representation of some
more abstract data type [1]. A simple example of this
case is the type "index" of OBJ-files [3]:
if (first_byte & 0x80)

index_word=(first_byte & 7F)*
 0x100 + second_byte;

else
index_word=first_byte;

I.e. to save space small (<0x80) numbers are
encoded by one byte and larger numbers are
represented by two bytes. This data type can be
easily described by the record with variant field, but
for the rest of the OBJ - file specification these low-
level details of index representation are of no
interest, and it would be better to be able to represent
all the elements of this data type by the number
which is encoded in it.

Abstract data types can also be used for
specification of data interpretations of higher than
just a type identification levels, but this problem is
beyond the scope of this article.

9) Address spaces, address blocks and pointers.
Some parts of compact blocks can represent
pointers - references to other data elements. In the
simplest case the value of such a pointer is an offset
from the beginning of the file or some linear function
of this value. But, generally, it represents a virtual
address in some virtual address space. An address
space can contain one or more address blocks. Each
address block is characterized by two address
mappings: physical and virtual. The address space of
lowest level is that of the data file itself. A good
example of format with virtual address space is
32-bit executable of Windows 95/NT [4].

When declaring pointer data type the address
space of this pointer and, in general, the expression
for calculating the referred address by the value of
the pointer representation type can be specified.

10) Machine instructions.
In the above-mentioned disassembler programs a
special type of pointer - the pointer to machine code
is implemented. For the present for specification of
machine instructions encoding we use a separate
language of binary unifications, but the approach of
dynamic data types can also be immediately used for
this purpose. We can confirm this assertion by
successful specification of the Java virtual machine
class file format [5] up to the machine instruction
encoding level using only FlexT statements. In
comparison with the widely cited approach of [6],
we can consider machine instruction representation

as yet another data type and describe it using the
designed for arbitrary data techniques.

5 Limitations of the suggested
approach.

Even with advanced technique of abstract data types
specification the situations are possible anyway
where pure declarative approach will not suffice. It
can happen when the length of the formula, which
describes the dependence between data elements or
between data element and its interpretation, can grow
unlimitedly. For example, it applies to some kind of
compressed data, because to describe the
encoding/decoding of this kind of data it is necessary
to describe the compression/decompression
algorithms, which use rather sophisticated data
structures to represent intermediate information.
Another example is a block of machine code: to
completely separate code and data it could be
necessary to simulate execution of machine
instructions.

But even for this cases we can use the technique
of dynamic data types to some limited extent. We
can describe the rest of the data and leave those
parts, which defy description in the state of raw data.
As to the code description the simplest approach,
which we apply in disassemblers, is to enable
manual specification of additional entry and stop
points.

6 Conclusion
This article describes the main concepts of the
language FlexT for specification of data
interpretation, which enables to describe wide range
of binary data formats using simple extensions of the
set of type constructors of traditional procedural
languages. Using FlexT different binary formats
were completely or partially specified, among which
are EXE (DOS, NE, LE, LX, PE), ELF, TPU, OBJ,
CLA, DBF, DB, BMP, ICO, CUR, ANI, WAV, DVI
and so on. It is also possible to use this language for
specification of machine instructions encoding. The
current version of specification interpreter uses them
for identification of data types. Further we are going
to extend its capabilities using the Horn subset of the
first order logical language of positively constructed
formulas [7,8] for description of other possible
interpretations. We also plan to implement
specifications of modification and for the purposes
of code analysis extend the language by elements of
machine architecture and machine instruction
semantics specification. Another projected

application of FlexT specifications is automatic
generation of data reading/writing code for different
programming languages.

Appendix: - An Example of Specification
1) Specification of the format of DBF file (dbf.rfh)

type
 TBinDate array[3] of num-(1)
 TDBF3FldKind enum Char (
 fkChar='C', fkNumeric = 'N',
 fkLog = 'L', fkDate = 'D',
 fkMemo = 'M')
 TDBF3FldDsc struc
 array[11] of Char Name
 TDBF3FldKind hType
 ulong DataP //like Delphi Tag
 Byte Len
 Byte DecNum
 Word MUsrRsrv1
 Byte WorkID
 Word MUsrRsrv2
 Byte SetFldData
 raw[8] Reserved
 ends
 PDataArray ^TDataArray near
 TDBF3Hdr struc
 Byte Ver
 TBinDate LastChangeDate
 ulong RecCnt
 PDataArray HdrLen
 Word RecLen
 raw[20] Reserved
 ends
 TDBF3HdrWithFields struc
 TDBF3Hdr H
 array[(@.H.HdrLen-@.H:Size-1)
 div 32] of TDBF3FldDsc Fields
 ends
data
0x0000 TDBF3HdrWithFields Hdr
type
 TFieldData array[Hdr.Fields[#].
 Len]of Char
 TFieldsData array of TFieldData:
 [@:Size=Hdr.H.RecLen-1]
 TRecData struc
 Char F
 TFieldsData D
 ends
 TDataArray array[Hdr.H.RecCnt] of
 TRecData

2) Excerpt from the data type identification result file
for a simple table with 2 fields and 3 records.

0000:Hdr: TDBF3HdrWithFields = (
 H:(Ver:03;
 LastChangeDate: (0:99,1:3,
 2:3); RecCnt:00000003;
 HdrLen:0061; RecLen:0008;
 Reserved: …);
 Fields: (
 0:(Name:'ID_________';
 hType:fkNumeric{'N'};
 DataP:00000000; Len:02;
 DecNum:00; MUsrRsrv1:0000;
 WorkID:00; MUsrRsrv2:0000;
 SetFldData:00; Reserved: …),
 1:(Name:'NAME_______';
 hType:fkChar{'C'};
 DataP:00000000; Len:05;
 DecNum:00; MUsrRsrv1:0000;
 WorkID:00; MUsrRsrv2:0000;
 SetFldData:00; Reserved: …)))
 0060:0D ¦.¦
0061:Hdr.H.HdrLen^: TDataArray = (
 0:(F:' '; D: (0:' 1',1:'Alpha')),
 1:(F:' '; D: (0:' 2',1:'Beta ')),
 2:(F:' '; D: (0:' 3',1:'Gamma')))
 0079:1A ¦.¦

References:
[1] B. Liskov, J. Guttag, Abstraction and

Specification in Program Development, The MIT
Press, 1986.

[2] Borland Delphi 2.0, .\SOURCE\VCL
\TypeInfo.pas.

[3] Microsoft Product Support Services Application
Note (Text File). SS0288: "Relocatable Object
Module Format."

[4] M.J. O'Leary, "Portable Executable Format",
Microsoft Developer Support documents, file
PE.TXT.

[5] T. Lindholm, F. Yellin, The Java Virtual
Machine Specification, Addison-Wesley: The
Java Series, 1996 (http://java.sun.com/docs
/books/vmspec/index.html, ftp://ftp.javasoft.
com/docs/specs/vmspec.html.zip).

[6] N. Ramsey, M. Fernández, The New Jersey
Machine-Code Toolki., http://www.cs.purdue.
edu/homes/nr.

[7] S. Vassilyev, Machine Synthesis of Theorems,
Journal of Logic Programming, Vol.9, No.283,
1990, pp. 235-266.

[8] S. Vassilyev, The Method of Synthesis of
Derivability Conditions for Horn Formulas, Proc.
SMC’98 Conference, 1998, pp. 1451-1456.

