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Abstract: In this paper a nonlinear model structure oriented to online identification of fadding
memory systems is presented. It is based on the Wiener structure and it is composed by
two cascade blocks: a linear dynamic system followed by a nonlinear static system, which
is designed using high level piecewise linear functions. The proposed resulting structure has
some properties which are specially atractive for online inplementation.
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1 Introduction

One of the main issues in system identification is the
model structure, specially when nonlinear systems
are considered. The model structure has a direct
incidence in solving the bias-variance traded-off, i.e.
enough degree of flexibility to adapt to any nonlinear
function while overfitting is prevented. Two basic ap-
proaches are used to solve the bias-variance trade-off.
The first one is based on a trial and error search for
the model structure that offers the best performance
with the testing data set. The second approach in-
troduces a “regularization” mechanism that prevents
a subset of the parameters to be adapted from the
data. This permits to generate a model with differ-
ent degrees of flexibility according to the mechanism
used. A good discussion and a set of references on
this subject may be found in [1].

Another important issue appears when on-line iden-
tification mechanisms are considered, for example, in
adaptive control structure setups. In this case, the
identification algorithm has to deal with system pa-
rameters and drift variations when moving from one
operation region to another. It is usually assumed
that the parameter variation of the system has a
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slower time scale than the dominant time constant of
the system. Then, if the system is moving to a new
region of the domain space, the model structure has
to incorporate the new information without affect-
ing the previous one. This is the stability-plasticity
trade-off that is well known specially in the context
of neural networks [2].

In this paper a nonlinear model structure oriented
to on-line identification of fading memory systems is
presented. It is based on the Wiener structure [3]
and it is composed by two cascade blocks: a linear
dynamic system followed by a nonlinear static sys-
tem, as follows:

(1) = Ax(t) + Bu(t)

y(1) = g(x(1)) (1)

with u(?) and y(¢) the input and output of the system
respectively, x(¢) the state vector and A the system
matrix. Within this context, Laguerre or Kautz or-
thogonal basis can be considered depending on the
dynamic nature of the system. (To model a reso-
nant system a Kautz representation is shorter than
the Laguerre representation since the elements of the
basis function may be tuned to oscillate at or near
the resonant frequency of the system.) If a Laguerre
basis is used [4], the state vector x(¢) can be consid-
ered as a vector of different filtered versions of the
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The nonlinear static mapping ¢(.) of the original
Wiener series [3], was performed by Hermite poly-
nomials. In the present paper g(.) is realized using
canonical piecewise linear functions [6]. As shown in
[7], [5] and [9], these functions can approximate uni-
formly any continuous function defined on a compact
domain. Another important aspect is that they have
a special structure which is linear by regions and per-
mits to express a nonlinear problem as several linear
problems. In addition, the coefficients of the expres-
sion can be obtained efficiently from the resolution
of a linear system characterized by a lower triangular
matrix [5]. As result, the structure which is proposed
has some properties which are specially attractive for
on-line implementations.

1.1 Basic Definitions

Definition 1 A function f : DCR"® — R™, D
compact is a PWL function iff:

1) D is partitioned into a finite number of polyhedral
regions R, R®), ... RN (s0 that D = Uf\; RW),
by a finite set of boundaries H;, 1 = 1,2, ..., h, where
each boundary is an n — 1 dimensional hyperplane
(or a subset of ),

H; = {x i (%) 1= alx - §; = 0}, (1.2)

and can not be covered ' by an hyperplane (n — 2)
dimensional, where a; € R™ and 3; € R!, Vi.
2) [ is expressed as

for any x €RY, where J) € R™X" is the jacobian
matriz of region R, and w(®) ¢ R™,
3) f is continuous on every boundary of adjacent re-
gions, i.€.,

JP)x @) = J@)x 4 qp()
¥x €RP) N R,

Definition 2 Let xq, %1, ...,X, be n + 1 points
in R™. A simplex s defined as the region
{x:x =Yg mix;}, where y; € [0,1], i € {1,n} and
Pimopi = L.

1A boundary B is said to be covered by an hyperplane H
iff BCH.

A simplex is said to be proper if and only if it satisfies

To X1 SR /7% .
rank([ L1 .1 ])_n—l—l. (1.3)

Geometrically, this means that a proper simplex can
not be contained in an (n — 1) dimensional hyper-
plane. The set of vertices of a simplex R(") will be

noted as vert (R(i)).

2 Preliminaries

Without loss of generality, the input state vector
will be assumed to lie in a compact region D =
{z € R" : ||x||., < d}. As it was exposed in [9] and
[6], a simplicial boundary configuration with grid
step 6, namely H, will be used to partition this do-
main into proper simplices of n 4+ 1 vertices. In this
way, it follows that the set PW Ly [D] of all con-
tinuous PWL mappings f : D — R!, defined on D
with the boundary configuration H, is a linear vec-
tor space, if addition and multiplication by a scalar
r € R are defined as:

a)(f+g)(z)=f(z)+9(z) ¥z €D

b)y(r-fi(z)=r-f(z)VzeD
where f,g € PW Ly [D]. In addition, every function
f € PW Ly [D]is uniquely determined by the values
of f at the vertices of D, i.e., f is uniquely defined
by the set of values

{f(vi) ,v; € vert (R(i)) ,VR(i)C D}

In [9] an equivalent representation was introduced,
using a set of basis functions, that permits to rep-
resent any f € PW Ly [D] in a compact form f =
cTA(z), where ¢ is a vector of parameters and A is
a vector composed of high level PWL functions with
different absolute value nestings, ranging from 1 to
n. This equivalence implies that there is a one to
one relationship between the vector ¢ and the set of
values of f at the vertices of the partition. Moreover,
with the introduction of an adequate inner product
in the space PW Ly [D] it is possible to obtain a set
of orthonormal basis (see [10]), so that f = éTA ()
and in this case each element of ¢ is the value of
function f at some vertex of D. As it was exposed in
[9], from an application standpoint it is convenient
to formulate the PWL function using the functional
form. However, for the purposes of this paper it is
more illustrative to state the identification algorithm
in terms of the values (2.2).

(2.1)

(2.2)



3 Identification Strategy

The objective of the identification is the computa-
tion of the nonlinear function ¢ (-) in (1.1), from a
sequence of samplings of the signals z (¢) and y (?).
The structure chosen to represent the function is a
PWL mapping with a simplicial partition according
to [9]. Before introducing the main idea, the follow-
ing concepts are necessary:

Definition 3 Let P = {ag,...,2,}, 2; € R" be a set
of samples. If there exists a subset P' = {z;,,...,x;,}
of n+1 points of P which determine a proper simplez,
then the points of P' will be referred to as “valid”
samples of the set P.

Lemma 1
The samples xq,%1,...,xp+1 € R™, are valid if and
only if rank ([z1 — xo, 22 — Zo, ..., Ty, — To]) = 0.

See Appendix

First, consider the identification of a PWL function,
namely g,. In this case, for any given region RO of
the domain space, g, has a linear affine expression
gp(2) = JOz + w0, where J() € R, () ¢ R,
Yi. Due to its local linear affine form, only n + 1
“valid” points in R™ and their corresponding func-
tion values are necessary to fully characterize J()
and w®. In consequence, any further sample in the
same region, in excess of the first n + 1 “valid” sam-
ples, do not provide additional information. Accord-
ingly, different choices of the initial set of n 41 valid
samples will give as result the same values for the
jacobian and offset vector of R().

However, the measured data corresponds to a nonlin-
ear function ¢, and in addition measurement noise is
always present. As a consequence of this, the values
obtained for J) and w(®, will vary in general with
the choice of the set of valid samples z; € R,

The strategy to incorporate in the model all the in-
formation provided by several different estimations of
JO and w( (or equivalently, several choices of sets
of n + 1 valid samples) is the following; with every
estimate obtained, namely J() and @, an upper
gu and a lower g, PWL functions are determined in
such a way that

g1 (z;) < JDz; + 0 < gy (2;)

holds for every valid z; € X, and for every estimate

(j(i),ﬁ](i)) obtained. This procedure guarantees a

robust approximation in the sense that both PWL
functions will “contain” the measured values of y (¢).
Finally, a nominal function can be determined as
gn = (g +91) /2.

Clearly, two different algorithms are needed to work
in parallel. One, to classify the samples in order to
select only valid samples, and the other to develop
both PWL functions gy and gy, using the valid data.
Next, both of them are explained in detail.

3.1 Selection of valid samples

This section centers in finding on-line sets of n + 1
valid samples, for a given sequence of samplings of
the input state vector X = {z (to),2 (t1), ..., 2 (tm)}-
The selection procedure is as follows: suppose that
k valid samples zg, z1,...,x5_1 have been obtained.
This implies that rank ([x’l,x’z, ...,wz_l]) =k-1,
where 2! = #; — z9. Then, using the Gram-Schmit
(GS) procedure with the k —1 vectors 2}, ...,z _; an
orthonormal basis €], ...,e,_; of R" is determined.
Next, a candidate sample £; € X is chosen. To
qualify as a valid sample, it must satisfy that
rank ([w’l,xé,...,xz_l,ﬁvz]) = k. To check if this
condition holds, we calculate its associated orthonor-
mal vector € using the GS procedure with the vec-
tors already found 2}, ...,2}_; and the new vector
. If ég # 0, we choose z = Zj, ey = € be-
cause in this case the vectors 1,25, ...,2} are lin-
early independent and then rank ([2],2},...,2}]) =
k. On the contrary, if é, = 0, &) is a lin-
ear combination of the vectors zf,z},...,2%_; and
rank ([95/1795/27---7952_179%]) = k — 1. In this case,
a new I € X is chosen.

This procedure is repeated, following the steps listed
below, until
n + 1 valid samples zo (1), 21 (1), ...
tained.

, &, (1) are ob-

step 1) Initialize i = 0, 29 (1) = 2 (¢;) and a tolerance
factor e > 0.
step ii) (¢ = ¢+ 1) Define

_ o 2t) _ w () —wo(1)
2 @)l e (1) = 2o (1]
Repeat this step until [(2’(#;),e1)| > ¢, then set

1 (1) = 2 (t;).
step j) (i =i 4 1) Define

€1

ej:‘




Figure 1: Selection of valid samples

Repeat this step until |(2(¢;),e;)| > ¢, then set
x; (1) =z (tz)

After n steps, a set S (1) of n + 1 initial valid points
S(1)=Az0(1),21(1),...,2, (1)} is determined.
Next, it is necessary to process the incoming samples.

When a new valid sample 2 arrives, the valid sample
zg (k) is discarded. Then, the first n—1 valid samples
are obtained as

o1 (k4 1)=2,(k)
and the new sample # is incorporated as
z(k+1)=2

The validity of 2 is checked using the condition
(¥',en)] > e, where e, = v/|v||, v = & —Z;é
(%', eq) €q. This is illustrated in fig. 1 for a domain
in R2.

In this way a set of valid samples

() = feo(b) s omzn (B} (3.1)
is always available.validsamples

If while working in simplex R(), the new valid sample
i is found in another simplex R(), the algorithm is
re-initialized. This is done by setting zo (1) = & and
using RU) as the new working simplex .

3.2 On line adaptation of ¢y and gy,

This algorithm uses as input the set (3.1) and
its associated set of measured values Y (k) =
{vo (k) ;. yn (K)}, where Y; (k) = g (xj (k), j =
0,1,...,n.

i) First, the region R() where the set § (k) belongs
to, is identified.

ii) Using the valid samples, the equation of the PWL
function, corresponding to the region R("), at step k,
given by (J(i) (k), w(® (k)) is determined solving the

linear system

Yo ()

1 k )T

’ ( M= l ﬁé) ((15)) ] (32)
where M (k) = [ xol(k) xll(k) acnl(k) . As

the next lemma states, the solution of (3.2) can be
done without matrix inversions, using back substitu-
tion.

Lemma 2 The equation system (3.2) is equivalent
to the lower triangular system

vk ] 0 "
!
k
@/2.( ) _ a1 22 J(Z)T (k)
: C. 0
y7/1 (k) Gp,1 Upn—1 Gpn
W = g (k) = U () o (1)

where a;; = (] (k),e;(k)), Vi > j and y! (k) =
yi (k) = yo (k).

Remark: Note that this equation system has always
solution because a;; = (z}(k),e; (k)) > ¢ # 0.

ili) With the values obtained for the pair
(J(i) (k), w® (k)), the values of the estimated non-

linear function ¢ at the vertices wvg,v1,...,v, €

vert (R(i)) are found:

G (v, (k) = JO (k) v, (k) + D (k) ,¢ = 0,1,...,n.

iv) The values of gy and ¢ at the vertices v €
vert (R(i)) are adjusted according to:

g0l (b + 1) = max{ gul,, (k). (0, ()},
grl,, (e +1) = min {grl, (k) g (v, (k)}
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Figure 2: Adaptation of gy and gy,

g=0,1,....n

ajusto An example in R' with two simplices and
three samples on each region is shown in fig. 2.
Note here that in each step only 2 (n 4 1) parameters
are adjusted.

3.3 Numerical Remarks

The constructive algorithm proposed guarantees that
only n+1 valid samples are necessary to estimate the
function in region R(). This is due to the fact that
the algorithm fully exploits the PWL structure of the
function and the structure of the domain. Within
the framework presented, less than n 4+ 1 valid sam-
ples collected in one region can be considered as not
enough information to characterize the function. Ac-
cordingly, in applications it is convenient to use an
algorithm in parallel to indicate which regions of the
domain have not been identified to avoid their use.

4 Conclusions

An algorithm has been proposed for the on-line iden-
tification on nonlinear functions using PWL func-
tions. It fully exploits the local linear affine form
which PWL functions have for a given region of the
domain. It is mainly intended to be used in Wiener
model structures, in connection with the identifica-
tion of dynamic nonlinear systems. Further research
includes an intensive comparison with another iden-
tification strategies like those proposed in [11] and
[12].

5 Appendix

Proof of lemma 1 : If the coordinates change z! =
x;—g is considered, condition (1.3) can be written as

/ LTINS /
rank(l (1) 9611 961” ) = n+ 1, which clearly is
equivalent to satisfy rank([ oy xh e a2l ]) =n,

which is the condition stated by the lemma.
Proof of lemma 2 : First, consider the expression of
a generic y; (k) written as

(5.2)

In addition, w(® (k)
second equation of
/
T

= yo (k) = JO (k) 2o (k) and the
(3. ) holds. Second, note that
(k) can be written as

zj (k) = 2o (k) =

Replacing (5.3) into (5.2) gives

v (k) = 0o (2 (k) e,) JO (B) ey + o (k) =

_ J

Do (i (k) e ) I8 (k) + yo (1)

and the lemma holds after noting that a;, =
(2 (k) ep)-
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