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Abstract:- In this paper, the margin of stability of 2-D (Two-Dimensional) continuous systems is
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F s s s1 1 11 0 0, , Reb g l q≠                  ≥       = ∞for or
(2.1)1    Introduction

and     Much interest has been shown during recent years
in 2-D continuous systems ([1]÷[10], [17], [30], [41]
÷[45]) for several reasons: In the design of 2-D and
m-D (m>2) discrete filters, the corresponding analog
filters play an important role. In particular, it is
possible using appropriate transformations to obtain
the desirable 2-D discrete filter from the
corresponding analog (2-D) filter [2]÷[9], [41]. On
the other hand, in the study of Distributed Parameter
Systems (DPS) which are described by Partial
Differential Equations (PDEs), each PDE actually
corresponds to an m-D continuous system. So, for
networks which include transmission lines as well as
passive lumped elements, for networks containing
semiconductor elements, for acoustic filters, the
description with 2-dimensional continuous systems is
necessary as one can see in [1], [4], [7], [8]. A third
reason is the need of the introduction of  the 2-D
continuous systems theory in Control Systems whose
coefficients are functions of parameters as well as in
Systems whose inputs and outputs are functions of a
time variable and a discrete spatial variable [8], [42]
÷[44]. For these reasons, there exists an importance
of the subject of the m-D continuous systems from a
practical point of view ([1÷10], [17], [23], [30], [41]
÷[45]).
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Additionally, the polynomial F s s1 2,b g is said to be

Hurwitz Polynomial if and only if (2.1) and (2.2) are
fulfilled.  Condition (2.1) is relatively easy to check
using any 1-D stability test. Checking condition (2.2)
is a more difficult task.
     There exist several algebraic methods for testing
the stability of 2-D continuous systems or,
equivalently, checking the Hurwitz character of 2-D
polynomials [30], [28], [29]. Among them are the
table form as advanced by Siljak [13], the
determinant method (Anderson-Jury [14]), the inner
method [16], [21] as advanced in [24], and  the
Zeheb-Walach method [12]. Another somewhat
tedious approach is the method of the bilinear
transformation. However, as pointed out by
Goodman [20] and Jury and Bauer [22] the bilinear
transformation can cause some difficulties in the
stability tests because of the presence of nonessential
singularities of the second kind and the value of the
function at infinity [18], [19].

     Stability testing of the 2-D and m-D (m>2)
continuous systems is of much importance [1÷10],
[30]. Let a Linear Shift Invariant 2-D continuous
system be described by the transfer function

     In the study of 2-D continuous systems, we are
interested not only in whether the system is stable but
also whether the system will remain stable in the
presence of system parameter deviations.
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=             (1)      For this reason and analogously to 2-D discrete
systems [31], the following definition is introduced:
Definition 1: Given a 2-D continuous system
described by the transfer function (1), we call

stability margin σ1 the greater non positive real

number for which F s s1 1 2+ σ ,b g is a Hurwitz

Polynomial.

where P s s1 2,b g and F s s1 2,b g are coprime

polynomials in the independent complex variables s1
and s2, It is assumed that there are no nonessential
singularities of the second kind on the double

imaginary axis, i.e. there are no points s s1 2,  with

s j1 1=     ∞ω or , s j2 2=     ∞ω or  such that

P s s1 2,b g=F s s1 2,b g=0.

     Similarly the following two definitions are stated.
Definition 2: Given a 2-D continuous system
described by the transfer function (1), we call

stability margin σ2 the greater non positive real

number for which F s s1 2 2, + σb g  is a Hurwitz

Polynomial.

     The system (1) is (Hurwitz) stable  if and only if



Definition 3: Given a 2-D continuous system
described by the transfer function (1), we call
stability margin σ  the greater non positive real

number for which F s s1 2+ +σ σ,b g is a Hurwitz

Polynomial.

maxσ1                             (3)

σ1≤ 0

under the constraint

     Note that the special case where the stable system
has nonessential singularities of the second kind for

some s j1 1=   ∞ω or   and s j2 2=   ∞ω or   is
excluded, since all three stability margins will be
zero.

detH1 1 1ω σ,b g=0                     (4)

where H1 1 1ω σ,b g  is the Hermitian matrix associated

with F j sω σ1 1 2+ ,b g. By interchanging the roles of

the variables s1 and s2, a completely analogous

method for the computation of σ2 is obtained.
Moreover, for the computation of σ  we demand

     In 2-D discrete systems these definitions were
given  in [31], while several methods for the
evaluation of stability margins already exist [31]÷
[38]. In this paper, the analogous methods in 2-D
continuous case are derived the applicability and
effectiveness of which are illustrated by some
examples.

   maxσ                               (5)
σ ≤ 0

under the constraint
2    Computation of the stability
margins for 2-D continuous systems detH ω σ1,b g=0                  (6)

A. Hermite Matrix Method
where H ω σ1,b g is the Hermitian matrix associated

with F j sω σ σ1 2+ +,b g. The following example

illustrates the implementation of this method.

     In this paragraph, a method of computing the
stability margin of 2-D continuous systems is
presented. The method is based on checking the
positive definiteness of the Hermite matrix of the

characteristic polynomial F s s1 2,b g of a stable system

described by (1). For a 2-D continuous system we

recall that the Hermite matrix H1 1ωb g associated

with F j sω1 2,b g is positive definite where

−∞ ≤ ≤ ∞ω1  and Re s s2 20l q ≥   = ∞or   [30].

Example 1: Consider the characteristic polynomial of
a 2-D (continuous) system

F s s s s s s1 2 1 2 1 27 2 2,b g = + + +                    (7)

It is always assumed that the corresponding 2-D
system has no nonessential singularities of the second
kind. Obviously, condition (2.1) holds while
condition (2.2) can be easily checked via the positive
definiteness of the Hermitian matrix which is

H1 1ωb g=14 2 1
2+ ω . Therefore F s s1 2,b g is a Hurwitz

Polynomial. For the computation of the stability

margin σ1, one forms the Hermitian determinant (i.e.
the determinant of the Hermitian matrix) of

F j sω σ1 1 2+ ,b g . This is

     Considering the Hermite matrix H1 1 1ω σ,b g

associated with F j sω σ1 1 2+ ,b g, we obtain that in

the "limit point" of the maximum value of σ1 the

Hermite matrix H1 1 1ω σ,b g  will be positive

semidefinite (−∞ ≤ ≤ ∞ω1 ,

Re s s2 20l q ≥   = ∞or  ). This implies that for this

point the matrix H1 1 1ω σ,b g  is singular. Thus the

computation of σ1 can be achieved by solving the
following optimization problem

H1 1 1 1 1 1
22 2 7 2ω σ σ σ ω,b g b gb g= + + +       (8)
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The maximum value of σ1 (σ1≤ 0) for which

H1 1 1ω σ,b g  is nullified for some ω1 is obviously -1.

Therefore the stability margin σ1 is -1. Quite

analogously one finds that σ2=−
1

2
. In order to

evaluate the stability margin σ , we form the
Hermitian determinant associated with

F j sω σ σ1 2+ +,b g. This can be found as

σ1
1

= − −R
S
T

U
V
W

max ,
b

c a
                    (12)

Consequently, interchanging the variables s1 and s2

one evaluates

σ2
1

= − −R
S
T

U
V
W

max ,
a

c b
                 (13)

H ω σ σ σ σ ω σ1
2

1
22 2 7 3 2 2 1 2,b g b gd i b g= + + + + +

(9)

To obtain σ , we form the Hermitian determinant

associated with F j sω σ σ1 2+ +,b g.

H b c a b c c a cω σ σ σ σ ω σ1
2

1
21,b g b g b gd i b g= + ⋅ + + ⋅ + ⋅ + ⋅ ⋅ + ⋅

           (14)

We obtain that for σ → −
+1

2
 , H ω σ1,b g is positive,

but for σ → −
−1

2
 and ω1 → ∞ , H ω σ1,b g is

negative. So, if σ → −
−1

2
 and one allows

ω
σ σ σ

σ1

22 2 7 3 2

2 1 2
= −

+ + +
+

    → ∞
b gd i

b g
e j, then

H ω σ1,b g=0. Therefore σ = −
1

2
.

We assert that σ  is the maximum of the real roots of
the polynomials (in σ)

b c a b c a c+ ⋅   + + ⋅ + ⋅   + ⋅σ σ σ σb g b gd i b g, ,1 2 . To

prove this, we suppose that − a

c
 is greater than the

(real) roots of the polynomials

b c a b c+ ⋅   + + ⋅ + ⋅σ σ σb g b gd i, 1 2 . Then if

σ → −
−a

c
 and

ω
σ σ σ

σ1

21
= −

+ + + +
+

  
b c a b c

c a c

b g b gd i

b g
,(→ ∞

since b c a b c+ + + +σ σ σb g b gd i1 2 >0 for σ → −
−a

c

(a b c, , > 0)) we obtain that H ω σ1,b g=0. On the

other hand, if one root σr  of the polynomials

b c a b c+ ⋅   + + ⋅ + ⋅σ σ σb g b gd i, 1 2  is greater than

− a

c
 then for σ σ= r  and ω1 0=  we find

H ω σ1,b g=0.  Hence,

Example 2: Consider the general first order
characteristic polynomial of a 2-D (continuous)
system

F s s as bs cs s1 2 1 2 1 21,b g = + + +              (10)

where a b c, , > 0. By verifying the same conditions
as in Example 1, one can easily see that this a
Hurwitz Polynomial. Similarly one finds

H b c a a c1 1 1 1 1 1
21ω σ σ σ ω,b g b gb g= + ⋅ + ⋅ + ⋅ ⋅    (11)

So, the maximum non-positive value of σ1 for which

H1 1 1ω σ,b g  is nullified for some ω1 is:
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It is worth noticing the symmetry between a and b.

B.   Geometrical Method
Fig.1: Nyquist curve of the complex variable

s j2 2= ω
     Let F s s1 2,b g be the characteristic polynomial of a

2-D stable system.

F s s b i i s si i

i

N

i

N

1 2 1 2 1
1

2
2

2 0

2

1 0

1

, ,b g b g=
==

∑∑            (16)

F(s ,jù )=0
1 2

ó
1

y=Im(s )

x=Re(s )
1

1

For the computation of the stability margin σ1,
symmetrically to condition (2.2), we consider the
relation

F s j1 2 0, ωb g =                    (17)

If ω2 vary along the typical Nyquist curve (Fig.1),
then the solution of the (1-dimensional with respect to

s1) polynomial equation (17) provides N1 branches

for the complex variable s1. For the sake of
simplicity, in Fig.2, we sketched only one branch. We

also note that the function F s j1 2, ωb g is

differentiable respect to s1 and ω2. This implies that
all the derivatives in the following relations will be
meaningful. Because of the stability of the considered
system, all the branches will lie in the complex open
left semiplane.

Fig.2: A geometrical interpretation of Equation (17)

     Differentiating (17) along the considered branch

of s1, one obtains
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∂ ω
∂

∂ ω
∂ω

ω
F s j
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ds

F s j
d1 2

1
1
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2
2 0
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+ =            (18)

Arg
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s
F s s
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s j

∂
∂

∂
∂

π

ω
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2

1 2

1 2 2

0

,

,

b g

b g

=

L

N

M
M
M
M
M

O

Q

P
P
P
P
P

=     or         (22)Since the solution of the (1-Dimensional) Eq. (17)

with respect to s1 is always possible, we have that

∂ ω
∂

F s j

s
1 2

1

0
,b g

≠  [26], [27]. Therefore, (18) renders,
It is more convenient to write Equation (22) in the
form

∂
∂ω

∂ ω
∂ω

∂ ω
∂

s

F s j

F s j

s

1

2

1 2

2

1 2

1

= −

,

,

b g

b g
                      (19)

∂
∂

∂
∂

ω

F s s

s

F s s

s
s j

1 2

1

1 2

2
2 2

0
, ,b g b g

×
F
HG

I
KJ

=  
=

   (23)

where the outer product (× ) of the complex numbers

x jy1 1+  and x jy2 2+  is defined as the algebraic
value of the outer product of the corresponding

vectors x y1 1,b g and x y2 2,b g  i.e. x y x y1 2 2 1− . We

could also have written Equation (23) in a more
general form

Equation (19) guarantees the existence of the
(geometrical) tangent of all the branches of (17) at
any point. Moreover, at the closest point of all these
branches to the imaginary axis, one observes that the
tangent will be parallel to the imaginary axis (Fig.2).
Therefore a simple necessary condition for the

stability margin σ1 will be

∂
∂

F s s

s
1 2

1

,b gF
HG

//
∂

∂
ω

F s s

s
s j

1 2

2
2 2

,b gI
KJ

=

            (24)
Arg

s∂
∂ω

π1

2 2

L

N
M

O

Q
P = ±                        (20)

where // denotes the parallelness of the corresponding
vectors.

Taking into account that s j2 2= ω , one rewrites (19)
as

    Thus, the stability margin σ1 is evaluated by the
solution of (17) and (23) (or (24)). These two
equations can readily be put in the form of three
polynomial equations in the three independent

variables x y, ,ω2, where x s= Re 1l q and

y s= Im 1l q. Their common solution(s) can be found,

if desired, using the resultant method of these
polynomials [16], [39]. In the sequel, one must select

as σ1 the maximum x of all the solutions (x y, ,ω2).

∂
∂ω

∂
∂

∂
∂ ω

s
j

F s s

s
F s s

s
s j

1

2

1 2

2

1 2

1 2 2

= −

=

,

,

b g

b g
                (21)

Therefore      A similar method can also be formulated to derive

the stability margin σ2. For the stability margin σ ,
instead of (17) and (23) we get the equations
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F s s
s x jy

s x j

1 2
1

2 2

0,b g
= +    
= +

=  
ω

           (25)

hold considering limits in their left hand side.
Therefore

σ1
1

= − −R
S
T

U
V
W

max ,
b

c a
               (30)

and

∂
∂

∂
∂

ω

F s s

s

F s s

s
s x jy

s x j

1 2

1

1 2

2
1

2 2

0
, ,b g b g

×
F
HG

I
KJ

=  
= +    
= +

      (26)

Similarly, interchanging the variables s1 and s2

σ2
1

= − −R
S
T

U
V
W

max ,
a

c b
              (31)

For the stability margin σ , Eq.(25) and (26) renderThese equations can also be put in the form of three

polynomial equations in x y, ,ω2. Their common
solution(s) can be derived if desired, from the
resultant method. Furthermore, the stability margin
σ  is evaluated as the maximum x of all the solutions

(x y, ,ω2).

1 02
2+ + + − =a b x cx c yb g ω                 (32)

a cx y b cx+ + + =b g b gω2 0                (33)

a cx cy c b cx+ − + =b g b gω2 0                (34)

From (32), y
a b x cx

c
=

+ + +1 2

2

b g
ω

. Multiplying (33)

by cω2 and substituting the term c yω2  from (32),
we get

Example 3: To demonstrate the method, we consider
the same characteristic polynomial as in Example 2.

F s s as bs cs s1 2 1 2 1 21,b g = + + +

where a b c, , > 0. Eq.(17) and (23) yield

a cx a b x cx b cx c+ + + + + + =b g b gd i b g1 02
2
2ω  (35)

1 02+ − =ax cyω                  (27)

ay b cx+ + =b gω2 0                 (28) Similarly, (34) yields

acy c b cx− + =ω2 0b g                 (29)
a cx a b x cx b cx c+ + + + − + =b g b gd i b g1 02

2
2ω   (36)

where x s= Re 1l q and y s= Im 1l q.
Obviously, from (35) and (36) if ω2 ≠ ∞ , one

obtains a cx a b x cx+ + + + =b g b gd i1 02  as well as

ω2 0= . On the other side, if − b

c
 is greater than any

real root of a cx a b x cx+ + + +b g b gd i1 2  and if

ω2 → ∞ , from (35), one finds x
b

c
→ −

−
. So, if we

let x
b

c
→ −

−
, then we obtain

     If ω2 ≠ ∞ , then solving (28) with respect to

b cx+b gω2 and substituting into (29), one finds

y = 0. Then, from (27), x
a

= −
1

. If ω2 → ∞ , (28)

implies that y → ∞  or b cx+ = 0. However, if

y → ∞ , from (27) we obtain x → ∞  which is not

accepted. Therefore b cx+ = 0 or x
b

c
= −  and

y
c ab

c
= −  →→∞

2
2

2 0
ω

ω . In this case, (28) and (29)
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ω2

21
= −

+ + + +

+
→ ∞

a cx a b x cx

b cx

b g b gd i
. In this

case, (33) and (34) hold considering limits in the left
hand side. Evidently, σ  is the maximum of all x, i.e.

the maximum of − b

c
 and the real roots of

a cx a b x cx+ + + +b g b gd i1 2 . Thus, the stability

margin σ  is given by Eq.(15).

are given which also show the equivalence of the
methods.
     One could obtain that the first method is simpler
and easy to understand but an optimization problem
is needed to be solved. Because of the use of
optimization, this method does not always yield an
exact value. From this point of view, the geometrical
method seems to be better, even if  we have to select
the solution with the max(x).
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