
Searching of all Occurences of a Word in a String

OCTAVIAN DOGARU and ROXANA DOGARU
West University of Timisoara

Bd.V.Parvan,nr.4, Timisoara,1900,
ROMANIA

Abstract. This paper presents a string search algorithm. The method searches to find all occurences of a
word p of m characters in a string s of n characters, 0<m≤ n. The upper bound of the number of comparisons
to determine that p is not in s, in the most unfavourable case, is m(n-m+1).
Key words: string, pattern, searching, all occurences, algorithm.
CSCC'99 Proceedings: - Pages 1503-1507

 1 Introduction
Let s[1..n] be a string of n characters and p[1..m]
a word or pattern of m characters, 0<m≤n, and
the task is to find all occurences of p in s. The
word and the string are both built on the same
alphabet Σ.

There are a lot of algorithms which app-
roach the problem of finding all occurences of a
pattern in a text. Many of them are based of the
precompiling of the pattern p. Perhaps the Knuth-
Morris-Pratt[9] and Boyer-Moore[1] algorithms
are the most known. In the paper [2] and the
references cited there are presented algorithms of
linear time complexity with small constants. They
use the idea of precompiling of the pattern p.

In a brute-force algorithm(BF) for string
search initially, the pattern p is alligned with the
left end of the text s. One compares successively
p1 with si, i=1,2,...,n-m+1. If there exists no match
of p1 with si, i=1,2, ...,n-m+1 then 'p is not in s'
and the process is terminated. Now let si be the
first occurence of p1. Then one compares
respectively p2 with si+1, p3 with si+2,...,pm with
si+m-1. If all pj match with si+j-1, j=1,2,...,m then p is
the first occurence of p in s and the process of
searching p in the rest of s is resumed.

 2 The main result
Starting from the method presented above we
propose the following algorithm of string search.
In fact, it is an algorithm which examines text
characters only in a window of size m, the length
of pattern, which contains the character si that
matches with pj the last character which has

produced a mismatch, the window sliding to the
right.

An algorithm to determine the first occu-
rence of p in s, based on the same idea, has been
presented in [7].

Our algorithm has a time complexity of
m(n-m+1) in the most unfavourable case and it
does not use a suplimentary array. It is different
of one presented in [6].

With p and s aligned to the left ends our
method is the following.

First one compares successively p1, p2, ...,
pm with corresponding s1,s2,...,sm. If there exists
all matches then 'p is in s'. The process of search-
ing is resumed with p1 and sm+1 if the latest exists.
In this algorithm, once the occurence of p exists
in s, the window is shifted to right over the text
exactly with m characters. We give this interpre-
tation because, if a word is found in a text it may
be erased if one wishes that.
 In the process of comparison at above step,
we assume that p1, p2,..., pj-1 respectively match
with s1, s2,... ,sj-1 but pj is the first character of the
pattern p which produces a mismatch of sj. Then
one searches the first occurence of pj in the right
part of sj between sj+1 and sn-m+j. If pj is not in this
substring then 'p is not in s' and the process stops.
Therefore a new search of p continues with pj and
not with p1 as in a brute-force algorithm presen-
ted,for example, in [10] and in [12] at page 60.

Now let si be the occurence of pj in this
substring. One verifies if the right part of pj that is
pj+1pj+2...pm match with the right part of si, that is
si+1si+2...si+m-j. There appear the situations:

1)if the right parts mismatch then let the
index k be, 1≤k≤m-j, for which pj+k ≠si+k and then

1504

the process of searching will be resumed with the
new index values i:=i+k+1 for si and j:=j+k for pj

this is a slide to right of lenght k;
2)if the right parts match then one compa-

res the left parts of pj and si. There are the cases:
2i)if the left parts match too then p is in s

and the process of searching is resumed with
i:=i+m-j+1 for si and j:=1 for pj in this order;

2ii)if the left parts mismatch then the pro-
cess of searching pj is resumed with the same j
and si+1.
 If i>n-m+j then the process stops.

The complet method described above is
written now as the procedure OD1, presented in
SPARKS language, slight modified(this language
is described in [8]). It is following
procedure OD1(m,n,p,s)
integer m,n,i,j,k; boolean f; char p(1:m), s(1:n)
f:= false; i:=1; j:=1;
loop
 while (j<=m) and (p(j)=s(i) do j:=j+1;i:=i+1
 repeat;
 if j>m then write('p is in s, i=',i-j+1);
 f:=true; j:=1; cycle
 endif;
 //there exists j such that p(j)≠ s(i)//
 1:i:=i+1
 while (i<=n-m+j) and (p(j)<>s(i)) do i:=i+1
 repeat
 if i>n-m+j then exit endif;

//there exists i such that p(j)=s(i)//
 //one tests the neighbours of p(j) with //
 // the neighbours of s(i) //
 k:=1;
 while (k<=m-j) and (p(j+k)=s(i+k)) do
 k:=k+1
 repeat
 if k<=m-j
 then //right parts mismatch, it exists k //
 //such that p(j+k) ≠ s(i+k)//
 j:=j+k; i:=i+k; goto 1
 else //the right parts of p(j) and s(i) match,//
 // one verifies the left parts //
 k:=1;
 while (k<j) and (p(k)=s(i-j+k)) do

 k:=k+1
 repeat
 if k=j then //left parts match too//
 write('p is in s, i=',i-j+1);
 f:= true;
 i:=i+m-j+1; j:=1; cycle

 else //right parts match but left//
 //parts mismatch,//
 //there exists k such that p(k) ≠ s(i-j+k)//
 goto 1 //new searching of p(j)//
 //is resumed //
 endif
 endif
until i>n-m+j repeat;
if not f then write('p is not in s') endif
endOD1.

In SPARKS language the statement cycle
causes a transfer of control to the closing phrase
of the innermost iteration statement which con-
tains it and the command exit causes a transfer of
control to the first statement after the innermost
looping statement which contains it.
 Theorem 1. The algorithm OD1 works
correctly.
 Proof. The partial correctness of this
algorithm can be shown by developing a proof
table where we shall insert a set of assertions
between the statements of the program and
starting from the preconditions one arrives to the
postconditions. The justifications are based on the
application of logical equivalences and the rules
of inference to the sequence of Pascal state-
ments[8 endif]. These are:
 i) the assignement rule of inference
 { P(e) } v:=e { P(v) }
 ii) the conditional rule of inference
a) {P ∧ B} s {Q} b) { P ∧B} s1 {Q}
 P ∧∼ B⇒Q P ∧∼ B} s2 {Q}
 -------------------------- ------------------
 {P} if B then s {Q} {P} if B then s1 else
 s2{Q}
 iii) the loop rule of inference
 a){ inv ∧B} s {inv} b){inv ∧B}s{inv}
 ------------------------------ ----------------------
 {inv}while B do s {inv}repeat s until B

{inv ∧∼ B} {inv ∧B}
where P,Q denote propositions, B-Boolean expre-
ssion, inv-the invariant of the loop and s, s1, s2-
are statements.
 procedure OD1(m,n,p,s)
 integer m,n,i,j,k; boolean f; char p(1:m),s:(1:n);
{ pre:input=(p1,p2,...,pm)∧(s1,s2,...,sn)∧n≥m>0∧
∀i∈{1,2,...,n}:si are characters∧∀ j∈{1,2,...,m}:pj

are characters}
f:= false; i:=1; j:=1;

1505

loop
 {inv:1≤j≤m}
 while (j<=m) and (p(j)=s(i) do
 {inv:∀h∈{1,2,...,j-1}:ph=sh∧1≤j,i≤m+1}
 j:=j+1;i:=i+1
 repeat
{∀h∈{1,2,...,j-1}:ph=sh ∧(j>m∨pj ≠si}
 if j>m then write('p is in s, i=',i-j+1);
 f:=true; j:=1;
 {output=i-j+1}{j>m∧f=true ∧ j=1}
 cycle
 endif;
{f=false∧∧j≤m∧ pj≠si}
 1:i:=i+1
 {(1≤i≤n-m+j∧ pj ≠ si) ∨ (i>n-m+j)}
 while (i<=n-m+j) and (p(j)<>s(i)) do
 {inv:pj ≠si-1 ∧ i≤n-m+j}
 i:=i+1
 repeat;
{(pj≠si-1 ∧ i≤n-m+j)∧((i>n-m+j)∨(i≤n-
 m+j∧pj=si))}
 if (i>n-m+j) then {pj ≠sn-m+j}
 exit
 endif;
 {i≤n-m+j∧pj ≠si-1 ∧pj=si}
 k:=1;
 while (k<=m-j) and (p(j+k)=s(i+k)) do
 {inv:∀h∈{1,2,...,k-1}:pj+h=si+h ∧
1≤k≤m-j+1}
 k:=k+1
 repeat;
{∀h∈{1,2,...,k-1}:pj+h =si+h ∧
(1≤k≤m-j+1)∧((k>m-j ∨ pj+k ≠si+k)}

 if k<=m-j then
{∃k∈{1,...,m-j}:pj+k ≠si+k}

 j:=j+k; i:=i+k; goto 1
 else
{∀k∈{1,...,m-j}:pj+k=si+k ∧ i ≤n-m+j∧1≤j≤m}
 k:=1;
 while (k<j) and (p(k)=s(i-j+k)) do
 {inv: ∀h∈{1,2,...,k-1}:ph=si-j+h ∧1≤k≤j}
 k:=k+1
 repeat;
 {∀k∈{1,2,...,j-1}:pk=si-j+k∧(k=j)∨(pk≠si-j+k}
 if k=j then
{∀k∈{1,2,...,m}:pk=si-j+k ∧1≤j≤m∧1≤i≤n-m+j}
 write('p is in s, i=',i-j+1); f:=true;

 i:=i-j+m+1; j:=1; cycle
 else
{∃ k∈{1,2,...,j-1}:pk≠si-j+k ∧1≤ j≤m∧1≤i≤n-m+j}
 goto 1
 endif
 endif
 until i>n-m+j repeat;
 {1≤ j ≤m+1∧ i>n-m+j}

 {f=true ∨ f=false}
if not f then write('p is not in s') endif

{post: output=θ}
endOD1
 Number of comparisons. Teoretically, to find
that 'p is not in s', in the most unfavourable case,
without loss in generality, we suppose that j=m,
that is, p1=s1, p2=s2, ...,pm-1=sm-1 but pm≠ sm. In this
case one compares successivelly pm with
sm+1,sm+2,...,sn which are n-m characters and for
every, pm=si,i=m+1,m+2, ...,n. Then one assumes
that for every i, i=m+1,m+2,...,n the left neigh-
bours of si and pm are ph=si-m+h, h=1,2,...,m-2
but pm-1≠ si-1. There exists m-1 left neighbours.
Hence the maximum number of comparisons, in
the worst case, is

Nmax = m+m(n-m) = m(n-m+1).
 This is the complexity of our algorithm. For
m=1, Nmax= n. For m=2, Nmax= 2n-2 that is
the KMP complexity[9]. For m=3 or m=4 it is
obtained BM complexity[1].

3. Profiling
We realized a comparison between a classical
brute-force algorithm(BF) presented in [10] and
[12] and the OD1 algorithm for different values
of m and the value of n=7000. We have used the
following version of BF(brute-force) algorithm
presented in [10]:
ALGORITHM BF;
 begin
 i:=0
 while i<=n-m do

j:=1;
 while (j<=m) and (p(j)=s(i+j)) do
 j:=j+1
 repeat;
 if j>m then write(i+1) endif;
 i:=i+1;
 repeat
 endBF.

1506

 The experiments have been realized on
alphabets of two sizes for every of the two
methods: OD1 and BF. One used a program
written in Turbo Pascal 7.0.

Alphabet of size 94
 The alphabet Σ is composed of 94 different cha-
racters. The length of the text s was n=7000 cha-
racters.

There was generated sequences of m and
n integer random numbers between 33 and 126
and then p and s have been considerated the
ASCII character arrays corresponding to these
sequences of numbers. For the same s one has
calculated the average of the times found for 100
repetitions for every value of m. The results are
presented in the Table 1. For m>3 the algorithm
OD1 is faster than BF algorithm.

Alphabet of size 26
For Σ made of 26 characters, Σ={a..z}, with the
same consideration on s and p the results are
presented in the Table 2. For this alphabet, for
m>3, the OD1 is faster than BF algorithm.

4 Conclusions.
In these two cases, the alphabets are great, of 94
and 26 characters res-pectively. Excepting the
cases where m=2 and m=3, that is, the patterns
have a very little lengths, the average running
times of the algorithm OD1 are more little than
the average running times of the algorithm BF
therefore OD1 algorithm is faster than BF
algorithm. It remains to analyse the running times
and for other sizes of alphabets.

This method may be slight improuved if
the neighbours of pj and si are compared in a
single loop with the index k between 1 and m.
 Table 1. Running times for an alphabet of size 94
m OD1 BF m OD1 BF
--
2 0.61 0.26 20 0.28 0.38
3 0.40 0.34 40 0.15 0.49
4 0.28 0.31 80 0.22 0.27
5 0.36 0.36 160 0.28 0.56
6 0.23 0.41 320 0.27 0.39
7 0.27 0.44 500 0.27 0.33
8 0.24 0.54 1000 0.33 0.38
9 0.22 0.50 2000 0.26 0.27
10 0.26 0.44 4000 0.16 0.27

Table 2. Running times for an alphabet of size 26
m OD1 BF m OD1 BF
--
2 3.82 0.46 20 0.28 0.38
3 0.62 0.38 40 0.15 0.49
4 0.28 0.46 80 0.22 0.27
5 0.21 0.49 160 0.28 0.56
6 0.35 0.38 320 0.27 0.39
7 0.33 0.44 500 0.27 0.33
8 0.23 0.49 1000 0.33 0.38
9 0.28 0.43 2000 0.26 0.27
10 0.28 0.45 4000 0.16 0.27

References:
[1] R.S.Boyer, J.S.Moore, A fast string searching

algorithm, Com. ACM, 20, 10(1977), 762-
772

[2] R. Cole, R. Hariharan, Tighter Bounds on The
Exact Complexity of String Matching,
Procc.33rd Symp.on Foundation of Computer
Sci., (1992), 600-609

[3] R. Cole, Tight Bounds on Complexity of the
Boyer-Moore string matching algorithm,
SIAM J. Computing, 23, 5(1994), 1075-1091

[4] R. Cole, R. Hariharan, M. Paterson, U.Zwick,
Tighter Lower Bounds on the exact
Complexity of String Matching, SIAM J.
Computing, 34, 1(1995), 30-45

[5] M. Crochemore, T.Lecroq, Tight bunds on
complexity of the Apostolico-Giancarlo
algorithm, Information Processing Letters,
63,1997, 195-203

[6] O. Dogaru, On all occurences of a word in a
text, Proceedings on Conference PSCW'' 98
(Prague Stringology Club Workshop), Sep-
tember 3-4, 1998, 51-57, Prague, Czech
Republic

[7] O. Dogaru, A pattern matching algorithm,
Proceedings on the Conference CSC'98
(Circuits, Systems and Computers), October
26-28, 1998, 2, 884-887, Pireus, Greece

[8] E. Horowitz, S. Sahni, Foundamentals of
Computer Algorithm, Computer Science
Press, 1983, 626 pp

[9] D. E. Knuth, J. H. Morris, V. R. Pratt, Fast
pattern matching in string, SIAM J. Comput,
6, 2(1977), 323-449

[10] T. Lecroq, Experimental Results on String
Matching Algorithm, Software-Practice and
Experience, 25(7), 727-765, 1995

1507

[11] A. B. Tucker, W. J. Bradley, R. D. Cupper,
D. K. Garnick, Fundamentals of Computing I,
McGRAW-HILL, INC, 1992, 400 pp

[12] N. Wirth, Algorithm and Data Structures,
Prentice-Hall, N.J.(1986), 288 pp

