Sear ching of all Occurencesof aWord in a String

OCTAVIAN DOGARU and ROXANA DOGARU
West University of Timisoara
Bd.V.Parvan,nr.4, Timisoara,1900,
ROMANIA

Abstract. This paper presents a string search algorithm. The method searches to find all occurences of a
word p of m charactersin astring s of n characters, 0<m£ n. The upper bound of the number of comparisons
to determine that p isnot in s, in the most unfavourable case, is m(n-m+1).

Key words: string, pattern, searching, all occurences, algorithm.

CSCC'99 Proceedings. - Pages 1503-1507

1 Introduction

Let g1..n] be a string of n characters and p[1..m]
aword or pattern of m characters, O<mg£n, and
the task is to find al occurences of p in s. The
word and the string are both built on the same
aphabet S.

There are a lot of algorithms which app-
roach the problem of finding all occurences of a
pattern in a text. Many of them are based of the
precompiling of the pattern p. Perhaps the Knuth-
Morris-Pratt[9] and Boyer-Moore[1] agorithms
are the most known. In the paper [2] and the
references cited there are presented algorithms of
linear time complexity with small constants. They
use the idea of precompiling of the pattern p.

In a brute-force agorithm(BF) for string
search initidly, the pattern p is alligned with the
left end of the text s. One compares successively
p. with s, i=1,2,....n-m+1. If there exists no match
of p; with s, i=1,2, ...,n-m+1 then 'p isnot in S
and the process is terminated. Now let s be the
first occurence of p;. Then one compares
respectively p, with s, ps with S.o,...,pm With
S+ma. If @l py match with s..4, j=1,2,....m then p is
the first occurence of p in s and the process of
searching p in the rest of sis resumed.

2 Themain result

Starting from the method presented above we
propose the following algorithm of string search.
In fact, it is an agorithm which examines text
characters only in a window of size m, the length
of pattern, which contains the character s that
matches with p; the last character which has

produced a mismatch, the window dliding to the
right.

An algorithm to determine the first occu-
rence of p in s, based on the same idea, has been
presented in [7].

Our agorithm has a time complexity of
m(n-m+1) in the most unfavourable case and it
does not use a suplimentary array. It is different
of one presented in [6].

With p and s aigned to the left ends our
method is the following.

First one compares successively py, pa, ..,
pm With corresponding s;,S,,...,Sn. If there exists
all matches then ‘pisin s. The process of search-
ing is resumed with p; and sy, if the latest exists.
In this agorithm, once the occurence of p exists
in s, the window is shifted to right over the text
exactly with m characters. We give this interpre-
tation because, if aword is found in atext it may
be erased if one wishes that.

In the process of comparison at above step,
we assume that p;, p,..., P-1 respectively match
with sy, S,,... ,S.1 but p; is the first character of the
pattern p which produces a mismatch of . Then
one searches the first occurence of p; in the right
part of 5 between 5.1 and S,my. If P is not in this
substring then 'p is not in s and the process stops.
Therefore a new search of p continues with p; and
not with p; as in a brute-force agorithm presen-
ted,for example, in [10] and in [12] at page 60.

Now let s be the occurence of p; in this
substring. One verifiesif the right part of p; that is
Pj+1Pj+2..-Pm Match with the right part of s, that is
S+1S+2...S+m. 1here appear the situations:

1)if the right parts mismatch then let the
index k be, 1EKEm-j, for which pj.« * S+« and then

the process of searching will be resumed with the
new index values i:=i+k+1 for 5 and j:=j+k for p
thisisadlideto right of lenght k;

2)if the right parts match then one compa-
res the left parts of p; and s. There are the cases:

2i)if the left parts match too then pisin s
and the process of searching is resumed with
i:=i+m-j+1 for 5 and j:=1 for p; in this order;

2ii)if the left parts mismatch then the pro-
cess of searching p; is resumed with the same |
and S+1.

If i>n-m+j then the process stops.

The complet method described above is
written now as the procedure OD1, presented in
SPARKS language, slight modified(this language
is described in [8]). It isfollowing
procedure OD1(m,n,p,s)
integer m,n,i,j,k; boolean f; char p(1:m), s(1:n)
f.=false i:=1; j:=1;
loop

while (j<=m) and (p(j)=s(i) doj:=j+1;i:=i+1

repeat;

if j>m then write('pisins, i=i-j+1);

f:=true; j:=1, cycle
endif;
Ilthere existsj such that p(j)* s(i)//

Li=i+l

while (i<=n-m+j) and (p(j)<>s(i)) doi:=i+1

repeat

if i>n-m+j then exit endif;

Ilthere exists i such that p(j)=s(i)//

/lone tests the neighbours of p(j) with //

/I the neighbours of s(i) //

k:=1;
while (k<=m+j) and (p(j+k)=s(i+k)) do
k:=k+1
repeat
if k<=m-j
then //right parts mismatch, it existsk //
/Isuch that p(j+k) * s(i+k)//
j:=j+k; i:=i+k; goto 1
else //the right parts of p(j) and (i) match,//
Il one verifies the left parts//
k:=1;
while (k<j) and (p(k)=s(i-j+k)) do
k:=k+1
repeat
if k=] then //left parts match too//
write('pisins, i='i-j+1);
f:=true;
i:=i+m-j+1; j:=1; cycle

else //right parts match but left//
//parts mismatch,//
[fthere exists k such that p(k) * s(i-j+k)//
goto 1 //new searching of p(j)//
/lisresumed //
endif
endif
until i>n-m+j repeat;
if not f then write('pisnot in s) endif
endOD1.

In SPARKS language the statement cycle
causes a transfer of control to the closing phrase
of the innermost iteration statement which con-
tains it and the command exit causes a transfer of
control to the first statement after the innermost
looping statement which contains it.

Theorem 1. Thealgorithm OD1 works
correctly.

Proof. The partial correctness of this
algorithm can be shown by developing a proof
table where we shall insert a set of assertions
between the statements of the program and
starting from the preconditions one arrives to the
postconditions. The justifications are based on the
application of logical equivalences and the rules
of inference to the sequence of Pascal date-
mentg[8 endif]. These are:

i) the assignement rule of inference
{ P} vi=e{ PVv)}
i) the conditional rule of inference
a {PUB} s{Q} b) { PUB} s1{Q}
PU~Bb Q PU~B} 2 {Q}

{P} if Bthensl else

s2{Q}
iii) the loop rule of inference
a){ inv UB} s{inv} b){inv UB}s{inv}

{P} if B then s{Q}

{inv}whileB dos {inv}repeat suntil B
{inv U~ B} {inv UB}

where P,Q denote propositions, B-Boolean expre-
ssion, inv-the invariant of the loop and s, sl, s2-
are statements.
procedure OD1(m,n,p,s)
integer m,n,i,j,k; boolean f; char p(1:m),s:(1:n);
{ presinput=(p1,pz,.--,Pm)U(S1,S;..-,Sn) U m>0U
" il {1,2,...,n}:s are charactersU" ji {1,2,...m}:p;
are characters}
f.=false i:=1; j:=1;

1504

loop
{inv:1£jEm}
while (j<=m) and (p(j)=s(i) do
{inv:" hi {1,2,...,j-1} :pr=s,U1£] i£m+1}
j=jtLi=i+l
repeat
{" h {1,2,...j-1} :;pr=s, UG>mUp; * s}
if j>m then write('pisins, i="i-j+1);
f:=true; j:=1;
{output=i-j+1} {j>mUf=true Uj=1}
cycle
endif;
{f=falseUiEmU pi* s}
Li=i+1
{(A£iEn-m+jUp; ¢ s) U (i>n-m+j)}
while (i<=n-m+j) and (p(j)<>s(i)) do
{inv:p t 5.1 Uifn-m+j}
=i+l
repeat;
{(p 5.2 UiEn-m+j)U((i>n-m+) UG En-
m+jUp=s)}
if (i>n-m+) then {p; Sy}
exit
endif;
{i€n-m+Up; * 5.1 Upj=si}
k:=1;
while (k<=m+j) and (p(j+k)=s(i+k)) do
{inv:" i {1,2,...,k-1} :psn=S+n U
1EKEM-j+1}
k:=k+1
repeat;
{" hi {1,2,...,[(-1} Pj+h :’S+h U
(AEKEM-j+1)U((k>m-j U praic * S}

if k<=m-j then
{$KI {1,....,m-j} Pk L S}

j:=j+k; i:=i+k; goto 1
else
{" Kl {1,...mj}:pu=s Ui En-m+ULEjEmM}
k:=1;
while (k<j) and (p(k)=s(i-+k)) do
{inv:" hi {1,2,... k-1} :pr=sj+n ULEKE]}
k:=k+1
repeat;
{" Kl {12,...J-1} :p=s (k=) U pi S
if k=j then
{" K {1,2,...m}:p=S j+« ULEJEMULEIEN-m+}
write('pisins, i='i-j+1); f:=true;

i:=i-j+m+1; j:=1; cycle
else
{$ K {1,2,...j-1}:p S+ ULE JEMULEIEN-MH}
goto 1
endif

endif

until i>n-m+j repeat;
{1£ j Em+1Ui>n-m+j}
{f=true U f=false}
if not f then write('pisnot in s) endif
{ post: output=q}
endOD1

Number of comparisons. Teoreticaly, to find
that 'p is not in s, in the most unfavourable case,
without loss in generaity, we suppose that j=m,
that is, p1=S1, P>=S2, .-+,Pm1=Sm1 bUt Pt Sm. INthis
case one compares successivelly pn, with
Sm+1,Sm+2:---,S Which are n-m characters and for
every, pm=s,i=m+1,m+2, ...,n. Then one assumes
that for every i, i=m+1,m+2,...,n the left neigh-
bours of s and p,, ae p=S.m+n, h=12,...,m-2
but pmi! s.1. There exists m-1 left neighbours.
Hence the maximum number of comparisons, in
the worst case, is

Nmax = m+m(n-m) = m(n-m+1).

This is the complexity of our algorithm. For
m=1, Nmax= n. For m=2, Nmax= 2n-2 that is
the KMP complexity[9]. For m=3 or m=4 it is
obtained BM complexity[1].

3. Profiling
We redlized a comparison between a classica
brute-force algorithm(BF) presented in [10] and
[12] and the OD1 agorithm for different values
of m and the value of n=7000. We have used the
following version of BF(brute-force) agorithm
presented in [10]:
ALGORITHM BF;
begin
i:=0
whilei<=n-m do
j=1
while (j<=m) and (p(j)=s(i+j)) do
=+l
repeat;
if j>m then write(i+1) endif;
ir=i+1;
repeat
endBF.

1505

The experiments have been redized on
alphabets of two sizes for every of the two
methods: OD1 and BF. One used a program
written in Turbo Pascal 7.0.

Alphabet of size 94
The aphabet S is composed of 94 different cha-
racters. The length of the text s was n=7000 cha-
racters.

There was generated sequences of m and

n integer random numbers between 33 and 126
and then p and s have been considerated the
ASCIl character arrays corresponding to these
sequences of numbers. For the same s one has
calculated the average of the times found for 100
repetitions for every value of m. The results are
presented in the Table 1. For m>3 the algorithm
OD1 isfaster than BF algorithm.

Alphabet of size 26
For S made of 26 characters, S={a..z}, with the
same consideration on s and p the results are
presented in the Table 2. For this alphabet, for
m>3, the OD1 isfaster than BF algorithm.

4 Conclusions.
In these two cases, the alphabets are great, of 94
and 26 characters res-pectively. Excepting the
cases where m=2 and m=3, that is, the patterns
have a very little lengths, the average running
times of the algorithm OD1 are more little than
the average running times of the agorithm BF
therefore OD1 agorithm is faster than BF
algorithm. It remains to analyse the running times
and for other sizes of aphabets.

This method may be dlight improuved if
the neighbours of p; and s are compared in a
single loop with the index k between 1 and m.
Table 1. Running times for an a phabet of size 94

m OD1 BF m ODl1 BF
2 061 0.26 20 0.28 0.38
3 040 034 40 0.15 049
4 028 031 80 022 027
5 0.36 0.36 160 0.28 0.56
6 023 041 320 0.27 0.39
7 027 044 500 0.27 033
8 024 054 1000 033 0.38
9 0.22 0.50 2000 026 0.27
10 026 044 4000 016 0.27

Table 2. Running times for an aphabet of size 26

m OD1 BF m ODl1 BF
2 382 046 20 0.28 0.38
3 0.62 0.38 40 0.15 049
4 0.28 0.46 80 022 027
5 021 049 160 0.28 0.56
6 035 0.38 320 0.27 0.39
7 033 044 500 0.27 033
8 023 049 1000 033 0.38
9 028 043 2000 026 0.27
10 0.28 0.45 4000 016 0.27

References:

[1] R.S.Boyer, JS.Moore, A fast string searching
algorithm, Com. ACM, 20, 10(1977), 762-
772

[2] R. Cole, R. Hariharan, Tighter Bounds on The
Exact Complexity of String Matching,
Procc.33rd Symp.on Foundation of Computer
i, (1992), 600-609

[3] R. Cale, Tight Bounds on Complexity of the
Boyer-Moore string matching algorithm,
S AM J. Computing, 23, 5(1994), 1075-1091

[4] R. Cole, R. Hariharan, M. Paterson, U.Zwick,
Tighter Lower Bounds on the exact
Complexity of String Matching, SAM J.
Computing, 34, 1(1995), 30-45

[5] M. Crochemore, T.Lecrog, Tight bunds on
complexity of the Apostolico-Giancarlo
algorithm, Information Processing Letters,
63,1997, 195-203

[6] O. Dogaru, On all occurences of aword in a
text, Proceedings on Conference PSCW"' 98
(Prague Stringology Club Workshop), Sep-
tember 3-4, 1998, 51-57, Prague, Czech
Republic

[7] O. Dogaru, A pattern matching agorithm,
Proceedings on the Conference CSC'98
(Circuits, Systems and Computers), October
26-28, 1998, 2, 884-887, Pireus, Greece

[8] E. Horowitz, S. Sahni, Foundamentals of
Computer Algorithm, Computer Science
Press, 1983, 626 pp

[9] D. E. Knuth, J. H. Morris, V. R. Pratt, Fast
pattern matching in string, SAM J. Comput,
6, 2(1977), 323-449

[10] T. Lecrog, Experimental Results on String
Matching Algorithm, Software-Practice and
Experience, 25(7), 727-765, 1995

1506

[11] A. B. Tucker, W. J. Bradley, R. D. Cupper,
D. K. Garnick, Fundamentals of Computing I,
McGRAW-HILL, INC, 1992, 400 pp

[12] N. Wirth, Algorithm and Data Structures,
Prentice-Hall, N.J.(1986), 288 pp

1507

