Symbolic Verification of Hybrid Systems

MARTIN V. MOHRENSCHILDT
Department of Computing and Software,
Faculty of Engineering,
McMaster University,
Hamilton, Ontario, Canada L8S 4K1,
e-mail: mohrens@mcmaster.ca

Abstract In this paper we present a new symbolic approach to hybrid systems. Hybrid systems are systems contain-
ing both, continuous and discrete changing quantities. We model hybrid systems using hybrid automata: Hybrid
automata extend the classical notion of finite state machines by combining differential equations to model the dy-
namic behavior of systems with a finite control. In contrast to other approaches we consider a hybrid automata as
a generalization of differential equations and develop the notion of a symbolic “closed form” solution of a hybrid
automata. A closed form solution is an expression which gives the value of the quantities in question as a function
of design parameters and time. These solutions allow us to perform the verification of design properties. We were
able to detect design constrains on control systems that other methods fail to detect. This paper gives the basic
definitions, algorithms, and an example to demonstrate the advantage of the proposed approach.

Key-Words: Hybrid-Systems, Symbolic Computation, Differential Equations, Design Verification, Control Systems.

1 Introduction

Many engineered systems contain both traditional analog
components and modern digital (finite state) components.
Such mixed continuous-discrete systems are often called
Hybrid Systems. It is of high interest to develop precise
models for hybrid systems in order to develop and verify
control software (hardware) for systems such as nuclear
reactors, patrol chemical plants, or car engines.

In general, we observe two approaches to hybrid systems:
discretisation and continuation; the systems are trans-
formed either to a pure discrete or to a pure continuous
system. There are few exceptions to this classification
(e.g. [3]).

The discrete approach describes the system in terms of
a finite set of states (assignments of values to the state
variables). The hybrid system is transformed into a dis-
crete system by partitioning the continuous state space
into modes. The mode changes of a hybrid system are
commonly triggered by some external events or by con-
ditions on the state variable. The theory of Hybrid Au-
tomata [1][10],[5] follows this discrete methodology. Most
analytical approaches, approaches based on logic, do not
actually study the differential equations which describe
the continuous state changes but restrict themselves to a
specific, easily solved class of equations, most of the time
equations of the form y' = ¢. [1], [2] In discretisation
approaches, much of the dynamic behavior of the system
is lost. For example, valves do not close instantaneously

even though many discrete models assume so. Further-
more, by using discrete modeling techniques, some design
constraints are lost in the process of modeling. For the
well known water level control, discrete models failed to
detect the valve closing speed constraints which were eas-
ily detected using my proposed approach (e.g. [1] [10]).
On the other hand, the continuation approach often found
in control theory, transforms the discrete state changes
into continuous ones by using approximation techniques,
or integral transformations. The result is a set of non-
linear differential equations modeling the hybrid system.
These differential equations are then solved using sophis-
ticated mathematical methods such as differential inclu-
sions [4]. As many of the real control functions are imple-
mented on digital machines, they contain discrete state
changes; the continuous models do not model the real
system.

In this paper we present a symbolic algebraic approach
to hybrid systems which can be seen as a mixture of the
two above described methods.

We developed a method to define and compute closed
form expressions called solutions of a hybrid system. A
solution of a hybrid system is defined as a closed form
algebraic expression which, when evaluated, (interpreted
as a function,) determines the value of each of the state
variables as the system evolves in time. This is accom-
plished by symbolically solving all differential equations
and then by deriving a recurrence relation which, when

solved, gives the initial conditions for each mode the sys-
tem is in as time passes. To be able to represent these
piecewise and periodic functions as algebraic expressions
we have to extend basic algebraic structures to contain
elements representing “discrete switches” [8], [9], [6], [7]
and periodic functions. The solutions of hybrid systems
will often contain design parameters, parameters that can
be chosen in order to optimize the behavior of the sys-
tem by minimizing or maximizing some cost-function as
in control theory. The solutions, being symbolic expres-
sions, allow us to verify design constraints and to optimize
design parameters. Further, in contrast to numerical so-
lutions, the symbolic solutions are exact, they do not con-
tain any rounding errors; rounding errors could trigger an
unwanted discrete state change. The proposed approach
differs form the logic based approach which normally use
fix-point computation in order to derive formulas which
hold in each state the system is in. Our approach allows
to verify systems which do not convert, fix-point compu-
tation methods cannot be applied to such systems.

This paper gives an introduction, the basic definitions,
algorithms and demonstrate the power of our methods
with an example, a water level control system. It is not
in the scope of this paper to give all technical details such
as decidability and stability of hybrid systems.

2 Hybrid Differential Equations

Normally, the definition of a solution of a differential
equation assumes that all coefficients of the differential
equation are continuous. But as we model real systems,
especially engineering systems containing a discrete con-
trol, the differential equation modeling the behavior of
the system can change in a discrete manner. These dis-
crete changes can in general be triggered not only by con-
ditions on time [6],[7], [6] but also by conditions on the
solution itself. The solutions of classical ordinary differ-
ential equations are local, meaning that the behavior of
the system is defined by the shape of the vector field at
the point of interest. Real systems can have a “finite
memory”, the vector field (given by the coefficients of the
equations) can change based on a finite number of events
of the past (e.g. hysteresis). We could even stop the sys-
tem in any state (point of time) and then continue with
some variables (initial states) changes in a discrete man-
ner. Even the order of some differential equations could
change (as in the example given later in the paper). Hy-
brid systems can perform actions; expressed in terms of
differential equations: New initial conditions can be given
triggered by some conditions on the state of the system.
The above shows that, in order to model hybrid sys-
tems we have to extend the notion of differential equa-
tions to hybrid differential equations. For example
y" + signum(y)y’ +y = 0 describes a system (an oscilla-

tor) where the coefficient of y' depends on the position of
the system, or y' = H(y(z)) where H(z) is a hysteresis
function.

Defining and computing the solution of hybrid differential
equation is much more difficult than that of a continuous
differential equations. The variety of possible behaviors is
much larger. The classical uniqueness theorems for initial
value problems, which requiter Lipschitz continuity of the
equations. Hybrid systems are not Lipschitz continuous.
We approach hybrid differential equations by transform-
ing them into semantically equivalent (having the same
solution) hybrid automata. A hybrid automata splits the
system into modes, where in each mode the differential
equation is continuous and all discrete state changes are
performed as the mode is changed.

3 Hybrid Automata

We study systems containing several (continuous) vari-
ables changing, continuously or discrete, in time. A state
of a system is given as each of the variables has a specific
value. Clearly, if we consider time as an integral compo-
nent of our systems, the system will never be two times
in the same state. The values of the variables of the sys-
tems can either change continuously in time, or instantly
(discrete), to new values. The continuous changes of the
variables are described by differential equations, the dis-
continuous changes are described by assignments. We
model such systems using hybrid automata, which are
automata consisting of a finite set of modes and a finite
set of transitions. Each mode contains a system of dif-
ferential equations. The transitions between the modes
are guarded with conditions and can contain assignments
(actions).

Formal, a hybrid automata is given by:

e A finite set of variables V = {y;}: All variables
depend on time. We write y;(t) to denote the value
of a variable y; a time point .

o A finite set of modes S = {s;} i =1---n. The mode
s; contains the system of m autonomous differential
equations y; = f; j(y,t) j = 1---m. Without loss
of generality we assume that these are coupled first-
order systems. ! Derivatives are always derivatives
by the time t.

o A set of transitions 7. The transition ¢;; leads
from mode s; to mode s;. A transition ¢; ; is a pair
(¢ij aij) of:

— Condition ¢; ;. ¢;; a boolean expression which
can contain predicates on the solution of the

L Although we sometimes use higher order equations for conve-
nience, the formal definition is based on first-order systems.

differential y; equation, or, in general, any other
discrete or analog variables.

— Actions a; ;. An action a;; is an assignment
to variables of V. Actions are used to “trigger-
events” or to give new initial conditions to the
differential equations of the next mode.

e The unique initial transition to; = (true,ag,;) with
an identical true condition and the action ag,; which
initializes all variables of V.

Often a graphical representation of hybrid systems is
given.

y<0

Figure 1: Sample system

The here defined hybrid automata are a variation of those
found in literature [1] [2], ,[5], [12] the main differences
can be observed in the definition of the semantics.

3.1 Semantics of a Hybrid Automata

We introduce some further conventions and notation:

e If a mode does not contain a differential equation in
the variable y; then we assume that this variable is
constant, meaning that the mode implicitly contains
the equation y; = 0.

Definition 3.1 (Well-defined) A hybrid automata is
well-defined if

e Deterministic In any mode s; only one of the con-
ditions c; j can be true at any instance of time.

e No zero time If a condition c; ; it true at time point
tr and action a; ; is taken, then there is no transition
condition cj; true at time point ty. This means that
we cannot “pass through” a mode. (FElse we could
define an automaton which would never stay in any
mode, and never proceed in time).

e Unique transition There exists at most one unique
transition t; ; leading from mode s; to mode s;.

Now we are ready to give the semantics of a hybrid au-
tomata. In order to define unique solutions of a hybrid

automata we give a deterministic semantics. Our seman-
tics can be called an earliest time semantics that is, the
automaton changes mode at the earliest possible point of
time. Other semantics found in literature e.g. [1] [2] allow
mode changes at any point of time a transition condition
is true, leading to a nondeterministic behavior. We see
the possibility to generalize our approach in future work
using intervals as solutions, meaning that each possible
solution will enclosed by a with functions bounded inter-
val.

With ¢; we denote the time point where the automata
switches mode the i-th time.

Semantics of a well-defined hybrid automata

e The automata starts with the initial transition,
where all variables are assigned a specific value. The
time starts at zero, to = 0.

e When entering the mode s; at time point t; we
start the “dynamic system” defined by the differen-
tial equations in this mode s;. The initial conditions
are given by the value of the variables at time point
ty. As soon as a condition ¢; ; becomes true,

thtt 1= m(}n ¢i,j(ty +d) = true

the automata changes mode to s; performing action
a; j. Since the automata is ”no-zero-time” the sys-
tem will stay for some time in mode s;. 2

From now on we restrict our examination to hybrid au-
tomata where no variable can be changed by external
“events”. All changes of variables are performed by the
hybrid automata itself. Such automata are called closed
hybrid automata. This implies that we model the en-
tire system of interest.

3.2 Hybrid Differential Equations and
Hybrid Automata, Traces, Unique-
ness

As stated, our aim is to develop a theory of solutions of
hybrid automata which is similar to the solutions defined
for differential equations.

Following the idea of a solution to an initial value problem
for differential equation we say that a hybrid automata
with initial transition ¢;,; defines a vector valued
function f of time ¢:

f(t) = (fyl(t)afw(t)v o 'fyn (t))

2We assume that this mode switch happens instantly. A hybrid
automata where these transitions take time can always be obtained
by adding extra modes modeling the time a transition would take
to perform

Definition 3.2 (Transition-Trace, Trace) A
transition-trace T of a hybrid automata is the
(finite or infinite) sequence of transitions t;, ;. ., which
the hybrid automata performs as time passes. The trace
of a system corresponding to a transition-trace is the
sequence of modes s;, in which the hybrid automata is in
as time passes.

We define the run corresponding to a trace of a hybrid
automata which gives the values of all variables as time
passes.

Definition 3.3 (Run) The run R corresponding to the
trace T = s;,8iy, Sigs-+- Of o hybrid automata is o se-
quence of pairs (tg, fr) where ty, is the time point at which
the automata switches from mode s;, to mode s;, ., and
fr is a vector valued function, giving values for all vari-
ables, and satisfying the differential equations in mode
Sipy, With initial values y(tp11) = fr(tr). fo(to) is the
initial condition of mode s1 given by the initial transition
to1.

Now we are able to state a theorem which holds only for
closed, well-defined hybrid automata.

Theorem 3.4 (Unique Trace, Run) The trace and
run of a closed, well defined closed hybrid automata is
unLquUe.

Proof We point to the uniqueness results of initial
value problems of differential equations. The system en-
ters mode s; form some mode s, using a transition ¢, ; and
performing the actions ak,¢. The values of all variables
give a unique set of initial conditions for the differential
equations in mode s;. These initial conditions define a
unique behavior of the differential equations in this mode.
The hybrid automata is well defined; the "no-zero-time”
condition guarantees that there is no transition condition
is true as we enter the mode. Hence, there will be a
unique transition condition of a transition ¢; ; leading to
mode s; that is the first to be true. This leads again to
unique initial conditions of the differential equations in
the next mode. Hence the sequence of modes s;,, and the
times ¢; where the automaton switches mode are unique
to a specific initial transition. 1

Note that different initial transitions can change the be-
havior of a hybrid automata significantly. This is also
true for unstable differential equations.

Behaviors of solutions of hybrid automata

e Converging Solutions The trace is finite. This
means that the automata enters a mode s; at time
point t; where ¢;; (t) = false for all t > ;.

y Si

SigySiyy - n

e Periodic Solutions The trace is infinite, but peri-
odic,

Sios Sigs " Sins Sipg1s Sinqosr T Sipgpr Sikgrr Sipgar T

e Chaotic Solutions The trace is infinite and not pe-
riodic.

Note that a periodic trace does not imply that the values
of the variables are periodic, only that, after a finite se-
quence of modes, we cycle through a sequence of modes.
We will represent the first two types of behaviors as closed
form expressions.

4 Transformations of Hybrid Au-

tomata
We present a transformation of hybrid automata which
we will use later to simplify our algorithms.

Definition 4.1 (Equivalence) Two hybrid automata
H and H are equivalent if the functions f defined by H
and f defined by H are the same for each possible action
in the initial transition to ;.

Theorem 4.2 (Single condition, action entrance)
Given a hybrid automata H, we can construct a hybrid
automata H where all transitions leading to any mode s;
t;; have the same condition and same action:

Vi, k tjiths €T cji = Crhi Naji = Qg

and H and H are equivalent.

Proof Let s; be a mode with two transitions ¢; ; t,; with
different, conditions or different actions leading to it. We
add a new mode s;. The transition ¢;; is changed to the
transition ¢,; (¢;,; is deleted) and for each transition #;
we add a new transition ¢; , with identical condition ¢; , =
¢i,r, and identical action a;) = Qijk- Clearly mode s; will
have additional new transitions leading to it, but their
conditions and actions are identical. We continue until
all modes have only transitions with identical conditions
and actions. The process will terminate since we will not
add any new “problem transitions” and the number of
transitions is finite. 1

Transforming a hybrid system will reduce the number of
possible initial conditions in each mode.

5 Closed Form Solutions, Verifica-
tion

Our goal is to compute an expression which will repre-

sent the behavior of a hybrid automata as a function of

time. In contrast to other approaches for the verification
of hybrid automata we define and compute closed form so-
lutions of hybrid automata, meaning we find closed form
expression which computes the value of all variables of the
hybrid system depending on time. As design parameters
are symbolic constants we are able to detect (compute)
constrains on the design parameters in order to satisfy
constrains put on the hybrid system. Clearly, due to in-
decidability results of hybrid automata we are not able to
compute closed form expression for each hybrid automata
[12].

Definition 5.1 (Closed Form Solution) Given a hy-
brid automata H with n variables. Let f be a n-
dimensional vector valued function defined by this au-
tomata (3.8). An expression s with s(t) = f(t) is called
a close form solution of this hybrid automata.

5.1 Expressions

In order to represent closed form solutions of hybrid au-
tomata we have to enlarge the classical algebraic are ex-
pressions used to represent these solutions.

We start with the classical algebraic expressions formed
using the variables y;, formal parameters p;, time ¢ ra-
tional numbers, and the function symbols +, —, *,. Fur-
ther, as needed, we add transcendent extensions such as
e, In, sin, cos. For expressions t1,ts,- - t, and t we write
too =to{y;, — ti,, Yi, — ti,, -} tO represent the simul-
taneous substitution of the variables y;, in the expression
t. Next we extend the expressions by three expression
constructors namely:

5.1.1 Piecewise Continuous Functions

In [6] a decidable theory of piecewise continuous functions
is presented. A piecewise continuous function is a func-
tion that can be represented using piecewise expressions,

expressions of the from:

piecewise(ci, fa2, ¢2, f2,¢3, f3,--+)

where the ¢; are boolean conditions and the f; expres-
sions. The expression f; is selected if the condition ¢; is
true. 3.

5.1.2 Periodic and Generalized Periodic Func-
tions

A function f is called periodic if for some p, the period,

z€0.pVkeN f(z)=f(x+kx*p)

WE represent periodic function using the following nota-
tion pery;

3If two conditions are true at the same time, then the first in the
sequence of conditions is chosen.

Definition 5.2 (Integer Divider and Reminder)
For a x € R we define irem : R — R and idiv: R - Z

ziremp =k where k € Z such that pk<z <p (k+1)

zidivp =y wherey such that yk € Z y+kp==x
(uk means the smallest k such that - --)

We generalize further and even allow the period of a func-
tion to change.

Definition 5.3 (Generalized Periodic) A function
f :R — R is generalized periodic with period p there
exists a function g : R X Z — R with

f(z) = g(xzirem p,z idiv p)

we write then f = gen_periodic [,

Generalized periodic expressions allow us to represent
functions which can not be represented using classical
algebraic expressions. Such a function is for example
x idiv p, the ”stairway to heaven” function.

5.2 Computing Closed-Form Solutions
Now we are equipped to present our method used to com-
pute closed form solutions of hybrid automata. The com-
putation of the closed form solution is performed in four
steps: (1) Solve the differential equations, (2) compute
the possible traces of the system, and decide if the trace
is finite or periodic, (3) compute the initial conditions
for each mode in the trace, using a recurrence relation,
as a function of time and the number of times we cy-
cled through the periodic portion of the trace. (4) Find a
closed form expression representing the function defined
by the hybrid automata. We describe each step of the
algorithm. Step one and three are fully automated, step
two still needs user input in some cases. Given a hybrid
automata H we first transform H to a single condition-
action-entrance automata H using 4.2.

1. Symbolic Solving Step

e Compute the symbolic solution
fii (6 Y0, -, Yn) of the (system of) differential
equations in each mode s; where the starting
time is parameterized t,, and initial conditions,
not fixed by the conditions or actions leading
to this mode, are parameterized. This results
in the substitution sol; = {y; = fi,y; }

e For each mode s;, for each transition ¢; ; de-
termine the time point(s) trans;; by solving
the (system of) equations ¢;; o sol;. These
time points will depend on the parameters in-
troduced as the initial conditions for this mode.

For some systems we detect restrictions of the
parameters in this step since it must hold that
trans;; > ts,;.

2. Trace Determining Step First we determine all

possible loops of the hybrid automata (a loop is a re-
peating sequence of modes). Clearly, there exist only
finite number of loops; there is only a finite number
of modes, hence each infinite trace has to enter one
mode at least twice. We represent all possible traces
as sequences of modes:

SiosSirs " Stk Sipg19 Sinqar " Sikgpr Sipg1r Sinqor T

In the next step we will have to decide which of the
possible traces are actually taken. This problem is
in general undecidable, but many practical hybrid
automata (e.g. control systems) are constructed with
a periodic trace in mid.

3. Recurrence and Construction Step

e Given a finite trace we can easily construct a
piecewise defined function which is the solution
of the hybrid automata. For the trace

Sig> Si1> Siar "7y Siy

we construct the function

piecewise(t < t1, sol,
t < ta,s0ly 0o {yi(t1) = soly(t1)},- -,
t > ty, s0lp o {y;(tn—1) = solp_1(tn-1)})
where {y(t1) — solz(tr)} gives the initial con-
ditions as we enter a new mode.

e For a periodic trace

Sigs Sirs "y Sigs Sipg1s Sikgor T Singpr Sipg1r Sikqar T

we derive a coupled recurrence relations for the
loop

Yi = Yi 0 80l 0050l osol,

for each of the unknown initial conditions in
mode s;,. The solution of these recurrences
equations will determine the new initial val-
ues depending on the old values y; and possible
other values as we re-enter mode s;, after one
period. We write f;, ,,(n) to denote the value
of y; as we enter the mode s;, the nth time.

e Solve the recurrence equations to determine the
initial conditions for mode s;,,, depending on

n and fy,(0).

e Compute the remaining initial conditions of the
modes s;,; j = 2..I using the solution of the
recurrence relation.

e Compute the actual period of the automata, by
computing the time needed for one loop of the
system. The period my be generalized depend-
ing on n.

o Compute the value of f,,(0) by following the
sequence of modes s;,, si,,"**, $;, leading to the
start of the period.

o Compose the general solution of the automata
using piecewise and generalized periodic func-
tions.

We implemented the steps into the computer algebra sys-
tem Maple. Step one and three are automated, step two
needs user input to select possible traces.

5.3 Example: Water Level Control

The water level control example can be found in many
places in literature [1] [10]. Although, it is a simple sys-
tem, it allows us to demonstrate our methods. By verify-
ing the safety properties of the water level control system
we were able to detect a condition which we did not find
in literature.

The system consists of a reservoir which has an intake
valve and and an out-flow. The intake valve can be
opened or closed. Clearly valves do not open or close
instantly, opening or closing takes time. The control has
to be designed such that the reservoir is never empty at
any point of time.

We can easily identify four modes of the system, (1) the
valve is open, (2) the valve is closing, (3) the valve is
closed, and (4) the valve is opening. In each of these
modes the system can easily be described by a differential
equation.

e (1) ¥'(t) = a1 where a; is the rate the reservoir fills
if the intake valve is open.

e (2) y'(t) =
valve.

az where ay is the closing rate of the

e (3) ¥'(t) = ag where a3 is the outflow-rate of the
reservoir as the intake valve is closed.

e (4) y"(t) = a4 where a4 is the opening rate of the
valve.

In contrast to other approaches we actually model the
dynamic phase of opening and closing the valve using a
second order differential equation and do not just say it
takes n seconds to open the valve. The two water levels
that trigger to close the valve or to open the valve are
c12 and c34. The water levels after opening (closing) the

valves are denoted c23 and c41, but they will cancel out in
the calculation and are just used to set up the symbolic
solutions of the differential equations. The transitions of
our system are the following: t9. = (true,y := ci2),
tiz = (y = cz,), 23 = (¥ = as,), t34 = (y = c34,),
ts1 = (¥ = a1,), our automata does not contain any
actions which would, in fact, make it simple to solve,
except in the initial transition.

w\

y=cl2

Figure 2: The water level

The Hybrid automata modeling the water level control
system contains the parameters a1, as, as, a4, c12, 34
Assuming that c12 < ¢34, a3 < 0 < a1 and a2 < 0 <
ay4 as first design constrains we observe that the trace is
periodic, cycling 1— >2—>3—>4—>1—>---.
“Safety properties” of the system

e The reservoir is never empty, Vt y(t) > 0.

e The reservoir will never overflow Vt y(t) < maxz,
where maxz is the maximal allowed water level in the
reservoir.

We can immediately derive the following design con-
strains:

0 < ¢12 < maz and 0 < ¢34 < maz, the sensors which
cause the valve to open and close have to lie within the
range of the reservoir.

Now, given some a1, az,as,as (flow rates and valve clos-
ing speeds) we have to determine the conditions on ¢12, ¢a4
and mazx such that the safety requirements are met.

5.4 Solve Differential Equations
We start in mode one, and solve the differential equations
with the initial conditions y'(t) = a1 y(s1) = c41 resulting
in

soll =a;z —ars; +cq

To switch from mode one to mode two, the water level has
to pass the ¢12 mark. Solving we find that this happens
at time point
a1 81 — C41 + C12
a1

Now we are in mode two. The water level is ¢12. The
initial flow rate of the water is a; since we are coming from
mode one. We solve the differential equation y"(t) = a
under the initial conditions y(s2) = ¢12,y'(s2) = a1 and
get:

1/23@:1:2 + (—agsy+a1)z + 1/2a2522 —S9a; + C1o

We have to determine the time point at which the valve
is closed. This is the case if y'(¢) is as. computing the
derivative and solving the resulting equation we receive:
_ Ta282 +a; —as
ag

Now in mode three we have to solve the differential equa-
tion y'(t) = a3, we know the water level as we enter this
mode by using the previously computed solution and time
point.

1/2&21‘2 + (—32 So + al)m + 1/2&2822 —Spaj + C12
We will switch to mode 4 as the water level reaches c3y4,

we solve the equation to determine this time point.

1/22a353a2+a12—a32—2012a2+ZC34az

ag a3z
Finally we are in mode four. Similar to mode two we
solve the equation y"(t) = a4 with the initial conditions
y(s4) = c34 and y'(s4) = a3 and determine the point of
time at which y'(t) = a;, at which the valve is closed
again.
ya(t) = 1/2a4a:2+(—a4 S4 +a3)a:+1/2a4542—54a3+C34
and the time point where the valve is closed is

a484— a3+ a1
a4

Now we computed all solutions for one period of opera-
tion.

5.5 Construct Recurrence Relation

Using all the computed solutions we are able to find a
recurrence relation which, computed the water level in
mode 1 depending on the water level as we entered mode
1 the last time.

si(n+1):= (%a4(2 as (—%

as (—2 a1 sl(n) aq — a32 + ()/12 + 2c3sa4 — 212 a4)

a4 Q1
—a1 +a3) + a1’ —as® —2ci2 a2+ 2¢34 a2)/ (a2 as)

—az +a1)/aa

5.6.2 Empty Reservoir

Solving the recurrence relation and computing the water
level as we enter state 2,3 and 4 we have all all the pieces

and can construct the solution.

1 —a3?+a1242czs a4

ar+g a1 <=3 Zia;r

1 2 1 ag %1 1 ag %12 %2
per 2028 +(2 aq a1 +a1)w+8a42a12 T < G

asx 4+ 1 —2a3 %2—a12+a3z2+2ci0 a2 r< i %3
3 2 ao 2 agag
1 2 _ 1 ag %3 1 a4 %32 :
;04T +(—5 4= " +a3)z+ 3 aiz.,z Otherwise

2 2
%1 = —a3“ +a1” +2c3aa4—2cC12 a4
= _lag%l _
%2 := 3 aga; W + a3

2a3%2+a12 —(132 —2ci12a2 +2c3s a2

%3 :

40

10 30

Figure 3: A sample level

5.6 Verification
Now we verify the safety conditions of the system with

the goal to derive conditions on the design parameters of

the system.

5.6.1 Overflow

We first verify that the reservoir will never overflow. For
this we compute the maximum of the water level using

the derivative, resulting in:

1/22C34a4 —332
ay

Now the maximal water level has to be smaller than th
maximum the reservoir can hold, we solve this resultin

condition for ¢34
as2 + 2maxay

=1/2
C34 / a

It turns out that we cannot freely choose the size of the
reservoir. Clearly the longer the valve takes to close the

larger the reservoir has to be to prevent overflow.

To verify that the reservoir will not be empty we compute
the minimal water level, again using the derivative:

2012 ag — a12

1/2
/ 2

The resulting condition is that
2.2
{ 1/2 a < C12 }
a

The minimum possible value for c¢i2 is restricted by the
closing speed of the valve but further we know that c12 <
¢34 < mazx.

We solved many other examples found in literature e.g.
reactor temperature control, train crossing and currently
investigate an application to robotics and control of a

chemical plant.

6 Conclusion
We developed a theory of hybrid systems by considering
them as a generalization of differential equations. Similar
to initial value problems of differential equations we found
a uniqueness theorem. Computing the symbolical solu-
tion of a hybrid system allows to introduce formal design
parameters, which can be used to verify or optimize the
design of the system. The presented symbolic approach
enables us to directly derive constrains on design param-
eters. Using recurrence relations to compute the initial
conditions for the modes of a hybrid automata allows, in
contrast to fix-point computations, to derive equations
which hold for the execution of the systems even if the
system does not converge. The presented methods were
tested using the classic examples found in literature. We
found design constrains on control systems which other

analytical methods failed to detect.

References
1. R. Alur, C.Ciyrciybetus, N. Halbwachs T.A. Hen-
zinger P. H. Ho (1995) “The Algorithmic Analysis
if Hybrid Systems”, Theoretical Computer Science,

138 1995, pp. 3-3/.

R. Alur, T. Henzinger, P.H. Ho (1993) “ Automatic
Symbolic Verification of Embedded Systems”, Pro-
ceedings of the 14th Annual IEEE Real-time Systems

Symposium (RTSS 1993) pp. 2-11.

. T. A. Henzinger,“The Theory of Hybrid Automata”,
11th Annual IEEE Symposium on Logic in Com-
muter Science (LICS 96) pp. 278-292 .

P. Filipoph, “Differential equations with discontinu-
ous Right-hand Side

e
g

10.

11.

12.

. M. S. Branicky (1998), “A Unified Framework for
Hybrid Control: Model and Optimal Control The-
ory”, IEEE Transactions on Automatic Control, Vol.
43, No. 1, 1998.

M. v. Mohrenschildt, (1998), “A Normal Form for
Rings of Piecewise Functions”, Journal of Symbolic
Computation, 13 pp.

M. v. Mohrenschildt (1997), “Using Piecewise
to Solve Classes of Control Theory Problems”,
MapleTech97, Vol .4, No. 3, pp. 33-37.

E.Engeler, M. v. Mohrenschildt, (1994), “Solving
Discontinuous Differential Equations”, The Combi-
natory Program, Birkhauser, pp. 98-116

M v. Mohrenschildt, (Sep 1998), “Solving Discontin-
uous Ordinary Differential Equations with a Com-
puter Algebra System” submitted to J. of Symbolic
Computation

Hybrid Systems, Lecture Notes in Computer Science
(736) Springer.

F.H. Clarke and others “Non-smooth Analysis and
Control Theory”

Y. Kesten, A. Pnueli "Integration Graphs: A Class
of Decidable Hybrid Systems.” Lect. Notes. Comp.
Sci. 736

