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Abstract: - Solving polynomial systems has been of great interest to both applied and theoretical scientists for
quite some time. Recently this interest has been reinforced by numerous demands from diverse areas such as
robotics, threat analysis, computer graphics, automatic geometric theorem proving, and invariant theory. New
ideas have emerged from computer algebra, most notably methods based on Groebner bases and on resultants.
The former yield very satisfactory exact answers, but the computations are resource demanding. Various
resultant methods have been the focus of recent attention, because they produce good results faster and more
efficiently.

In 1908 Dixon introduced a new resultant that generalized Bezout’s resultant. Dixon’s resultant eliminated
two variables out of a system of three polynomial equations, using basic properties of determinants. Dixon
proved that if the system has a common solution, then the resultant vanishes. This is true provided that the
polynomials have nonzero coefficients that are independent parameters. These are very strong restrictions that
make the method impractical for solving most polynomial systems.

Recently, the Dixon resultant has been revisited and generalized by Kapur, Saxena, and Yang. The
restrictions on the coefficients of the polynomial system in the generalized form are very mild and the method
can be applied to almost any system of n+1 equations and n unknowns (parametric coefficients allowed).
Subsequent work by Kapur and Saxena strongly suggests that this is the most efficient elimination method.
Their comparisons include the Macaulay and the more recent Sparse resultant.

In this paper we address the question of how to actually solve a polynomial system by using the Dixon
resultant. We describe a certain triangularization of the polynomial system based on the computation of several
Dixon resultants. This method exploits the special structure of the matrix whose determinant is the Dixon
polynomial. The new idea here is the following: instead of computing the determinant of this matrix directly, a
fraction-free Gauss elimination is performed based on the well-known Gauss-Bareiss algorithm. When done
properly, this elimination produces the principal minors of the original matrix on the main diagonal. Each of
these minors yields a corresponding Dixon resultant with an increasing number of variables. Eventually, all
these resultants form a triangular system whose solutions include – in general – the solutions of the original one.
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1   Introduction
In this paper we discuss how to transform a system
of polynomial equations into one in triangular form
by using the Dixon resultant [5]. More precisely, we
use the recent generalization of this resultant by
Kapur, Saxena, and Yang [7]. According to Kapur
and Saxena [8], this generalized Dixon resultant is
perhaps the most efficient way of eliminating a block
of variables from a polynomial system. The
comparison favors the Dixon resultant even over the
popular Macaulay and Sparse resultants. We have
partially verified these claims using our own
implementations of the Dixon resultant in Maple [11]

and Mathematica [12]. Our concern here is how to
use this efficient elimination method to solve
polynomial systems fast and in an automated way.
Our new idea is to compute several Dixon resultants
simultaneously by exploiting the special structure of
the cancellation matrix that yields the Dixon
polynomial. This is done by using a fraction-free
Gauss elimination based on the Gauss-Bareiss
algorithm [1]. A correct application of this algorithm
yields an echelon form of the cancellation matrix with
diagonal entries its principal minors. Each one of
these minors defines in turn a Dixon resultant with
one more variable than the preceding one. This
results into a triangular system whose solutions, in



general, include the solutions of the original system.
Our first experiments with this new approach were
very encouraging. The method seems to be fast and
efficient. However, this is only a preliminary step to
a pending more thorough investigation. Questions
that need to answered are: What is the exact relation
between the solution spaces of the original and the
reduced system? How do the Dixon extraneous
factors effect the original solution? How can one tell
whether the original system has finitely many
solutions, by solving the triangularized system?
     The remaining of this paper is organized as
follows. In Section 2 we introduce the classical
Dixon resultant. Then in Section 3 we discuss the
significant improvements made by Kapur, Saxena,
and Yang. Section 4 is devoted to the process of
triangularization and two examples. For simplicity,
here we confine our discussion and examples mostly
to three polynomial equations in two unknowns,
although the method is applicable to n+1 equations in
n unknowns, with possibly parametric coefficients.
Finally, in Section 5 we discuss our conclusions so
far and a direction for future work.

2   The Classical Dixon Resultant
In this section we introduce the Dixon resultant [1]
which is a generalization to three equations of
Bezout's elimination for two polynomial equations.
We start with Cayley's formulation [2] of Bezout's
method for solving a system of two polynomial
equations. According to Kapur this approach goes
back to Euler.
 Let f(x) and g(x) be polynomials in x, let d be the
maximum of the degrees of f and g, and let s be an
auxiliary variable. The quantity
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is a symmetric polynomial in x and s of degree d–1
which we call the Dixon polynomial of f and g.
Cayley (and Bezout in different notation) observed
that: every common zero of f and g is also a zero of
δ(x,y)  for all values of s. Hence, at a common zero,
each coefficient of si in δ(x,y) is identically zero. In
matrix notation we have
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where, the rows of the d×d matrix M consist of the
coefficients of the si s. This yields a homogeneous
system in new variables v1, ..., vd corresponding to x0,
..., xd-1 and equations corresponding to the
coefficients of si.
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This system has nontrivial solutions if and only if its
determinant D is zero. This determinant D is called
the Dixon resultant of f and g. The matrix M is the
Dixon matrix. The matrix whose determinant was
used to compute the Dixon polynomial is called the
Cancellation matrix of f and g.
     So far we have seen that the vanishing of D is a
necessary condition for the existence of a common
zero of f and g.
    Dixon generalized Cayley's approach to Bezout's
method to systems of three polynomial equations in
two unknowns. Starting with the system
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we define δ  as follows
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for auxiliary variables s and t. One again gets a
homogeneous linear system just as before, by setting
the coefficients of the power products sitj equal to
zero. The corresponding determinant of the
coefficient matrix is the Dixon resultant D and is free
of the variables x and y.
     To illustrate, let us consider the following
example discussed in [6] and solved there by a
combination of Sylvester resultants.

Example 1  Eliminate y and z from the following
system that represents the intersection of two planes
and a sphere.
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Solution:  The Dixon polynomial is given by
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Therefore, the Dixon matrix is
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Its determinant is the Dixon resultant
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which is free of y and z.

Note  In practice we compute the Dixon polynomial
as the following determinant
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and g1, g2, h1, h2 are defined similarly. This works
well when the polynomials are not very sparse and of
high degree at the same time.
     To understand what Dixon proved we need the
definition of generic ndegree polynomials.

Definition   The polynomials p1, p2, ..., pn+1  in
variables x1, x2, ..., xn are generic ndegree if there
exist nonnegative integers k1, k2, ..., kn  such that for
1≤ j ≤ n+1 we have
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In other words, generic ndegree polynomials have
nonzero coefficients that are independent parameters.
Dixon proved the following theorem.

Dixon’s Theorem  For a system with three generic
2degree polynomials, the vanishing of the Dixon
resultant D is a necessary condition for the existence

of a common zero. Furthermore, D is not identically
zero.

As noted in [9] Dixon's method and proofs easily
generalize to a system of n+1 generic ndegree
polynomials in n unknowns.
     This method can be applied to polynomials with
symbolic coefficients and be used for a simultaneous
elimination of a block of unknowns by using only one
calculation. Often, even if the polynomials are not
generic ndegree the method may still yield a
necessary condition for the existence of a common
zero. These features, along with the relatively small
size of the resulting determinants (compared with
other resultant methods) makes the method very
attractive.
    However, if the polynomials are not generic and
ndegree, (which is typically the case in practice), then
one may be faced with some serious problems. For
general polynomial systems the vanishing of the
Dixon resultant may not yield a necessary condition
for the existence of a common zero. Also the Dixon
matrix may be singular, which will make the Dixon
resultant identically zero. This is exactly the case for
the polynomial set
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When we try to eliminate x and y from the Dixon
polynomial
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we get the following Dixon matrix
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whose determinant is clearly zero.
     Note that we could remove the zero rows and
columns from a Dixon matrix but then the matrix
may not even be square, so computing its determinant
would be meaningless. In the next section we see how
these important issues were resolved in [9].



3  The Kapur-Saxena-Young Approach
Kapur, Saxena and Yang resolved all the problems of
the classical Dixon resultant, provided a certain
precondition holds. Their work makes this method
very practical and perhaps the elimination method of
choice. Let us describe their main theorem and
algorithm.
     Suppose we have a system of n+1 polynomial
equations in n variables such that the coefficients of
the polynomials are themselves polynomials in a
finite set of parameters. Let M be the Dixon matrix
obtained as before, except that this time we also
remove all zero columns and all zero rows from it.
(So M can be rectangular.) Let M’ be an echelon
form matrix obtained from M by using elementary
row operations except for scaling of rows. (Such a
reduction is always possible.) Let D be the product of
all pivots of M’. Under this notation we have the
following theorem from [9].

Theorem 1 (Kapur-Saxena-Yang)  If at least one of
the columns of the Dixon matrix is not a linear
combination of the remaining ones, then D=0 is a
necessary condition for the existence of common
zeros of the polynomial system.

     This theorem yields a simple algorithm for
obtaining the necessary condition D=0. We call D in
the theorem as the Kapur-Saxena-Yang (KSY) Dixon
resultant.
     Let us refer to the assumption of the theorem
about a column being a linear combination in the
remaining ones as the precondition. We have the
following algorithm.

Algorithm
Input:  A set of polynomials, with numeric or
parametric coefficients.
• Compute the Dixon matrix M. If the precondition

holds continue.
• Row reduce M without scaling to row echelon

form M’.
• Compute the product D of the pivots of M’.
Output:  D, the Kapur-Saxena-Yang Dixon resultant.
Its vanishing is a necessary condition for a solution
of the given system.

     The following theorem from [9] offers a
rephrasing of the precondition of theorem 1.

Theorem 2
Let M be the Dixon matrix of a polynomial system
and let m1, m2, ..., ms be the columns of M. Let
w=(w1,w2,..., ws)

T be a solution of the homogeneous
system

0mm0w =+⇔= sswwM L11

Then precondition of theorem 1 is true for the ith
column if and only if  0=iw .

     Testing for the validity of the precondition is
usually, a simple test in practice. We personally use
a probabilistic test before he row reduce the entire
Dixon matrix M.
     It is worth noting that the precondition is a rather
mild assumption on the polynomial set. Most of the
interesting examples seem to satisfy it, thus the KSY
method applies.
     To illustrate the power of the KSY method, let us
now return to system (4) whose Dixon resultant
turnes out to be identically zero. The KSY Dixon
resultant is obtained by removing the zero rows and
columns of Dixon matrix shown. Row reduction of
the this matrix without scaling yields an echelon form
matrix whose product of the leading entries is

)232)(12)(1(8 2 −+−−= zzzzzD
This is not identically zero. In fact, solving D=0 for z
yields all the values of z that lift to the exact rational
solutions of the original system.
     Many more examples as well as Maple and
Mathematica programs of the Kapur, Saxena, and
Yang approach can be found in [11] and [12].

4   A Triangularization Method
In this section we show how to combine the fraction-
free algorithms with the Dixon resultant elimination
to triangularize a system of polynomial equations.
The solution set of the resulting system contains all
the solutions of the original system, provided that the
precondition of theorem 1 holds for each Dixon
matrix in the process.
     First, let us briefly review the Gauss-Bareiss
algorithm. More details can be found in [1], [4], and
[14]. This algorithm, due to Bareiss, is based on
Sylvester's identity. The essence of the algorithm can
be seen by considering a size three square matrix.
The result of a divisionless Gauss elimination on
matrix A
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is an upper triangular matrix
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The final element has the factor a and that when
removed yields det(A). In a case of a larger matrix
this removal would yield the 3×3 principal minor.
Furthermore with a larger matrix, every element
below or to the right of the (3,3) entry would have
this factor a at this stage. This factor is therefore
removable from the entire active submatrix. The
same comment applies for subsequent factors whose
removal will leave all the principal minors on the
diagonal of the original matrix.
     Let us now see how to combine the fraction-free
algorithm with the Dixon resultant elimination to
triangularize a system of n polynomial equations
in m variables, with m≥ n. Such a system we view as
one in n-1 variables with parametric coefficients. For
the simplicity of the illustration of the method, let us
consider system (1) of Section 2. Instead of
computing the Dixon polynomial δ  in one step, we
apply a fraction-free elimination to the matrix A with
determinant δ  from equation (3), Section 2.

),,(),,(),,(

),,(),,(),,(

),(),(),(

222

111

tsyhtsygtsyf

syxhsyxgsyxf

yxhyxgyxf

A =

Fraction-free elimination of A yields a matrix of the
form
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where, det(A1) is the 2×2 principal minor of A.
Explicitly,
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Note that if det(A1) is considered as a polynomial in
its own right its Dixon resultant will be free of x.
Also det(A) has Dixon resultant free of x and y. So,
we see that the diagonal elements of E(A) yield Dixon
resultants that produce a system of the form f, gx, hxy,
where gx is free of x and hxy  is free of x and y. If the
assumption of the theorem holds for each Dixon
matrix then any solution of the original system is also

a solution of f, gx, hxy.  We call this method a Dixon
triangularization of a polynomial system.

Example 2  Use Dixon triangularization to system
(4) of Section 2.

Solution: The Dixon polynomials after the fraction-
free Gauss elimination are
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and the corresponding Dixon resultants yield the
following triangularization
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The solutions of the triangular system over the
rationals are

(3,-5,-2)),(1/2,0,1/2(0,1,1),

,-1,0),(,-2,1),(,,-3/2,1/2)(,0),,(- rrrrr

for any rational number r. These include the
solutions of the original system

 (3,-5,-2)(0,-2,1),

1/2),(1/2,-3/2,),(1/2,0,1/2(0,0,0),

     One has to be careful with the application of this
method in practice and should always check for the
validity of the precondition. The following example
illustrates this point.

Example 3   Compare the solutions of the following
system with those of the Dixon triangularization
described.
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Solution:   The rational solutions of this system are
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for any rational numbers r. A triangularization as
above yields the following triangular system
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with rational solutions
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for any rational numbers r and s. Note that the
solution (1,-1,r) of the original system is not a
solution of the triangularized one. In this case the
method fails. The reason is, as one can easily verify,
that each column of the Dixon matrix of the original
system is a linear combination in the remaining ones.
Thus, the precondition fails.

5   Conclusions
The Dixon triangularization described in the last
subsection is in its preliminary stages. This is only a
first step towards actually solving polynomial
systems by this method. Some very basic questions
currently under consideration are:
• What is the exact relation between the solution

spaces of the original and the reduced system?
• What kind of assumptions are needed to ensure

that the solution space of the original and the
reduced system coincide?

• How do the Dixon extraneous factors affect the
original solution?

• How can one tell whether the original system has
finitely many solutions by examining the
triangular system?

• How fast is this method compared with other
methods?

Experiments indicate that this method is very fast
compared with solutions found by using Groebner
bases. It is also fast compared with other resultant
methods. Unlike the one step elimination of other
resultant methods we eliminate one variable at a time
until triangularization.
     There are also some disadvantages of the Dixon
triangularization. The method may fail due to
singularities. In this case reshuffling of polynomials
may help. There are extra solutions that are not
solutions of the original system. The method is not
very efficient for high degree polynomial systems

with many equations and variables. In those cases,
however, all other basic methods also fail.
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