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Abstract: - Solving polynomia systems has been of great interest to both applied and theoretical scientists for
quite some time. Recently this interest has been reinforced by numerous demands from diverse aress such as
robotics, threat analysis, computer graphics, automatic geometric theorem proving, and invariant theory. New
ideas have emerged from computer algebra, most notably methods based on Groebner bases and on resultants.
The former yield very satisfactory exact answers, but the computations are resource demanding. Various
resultant methods have been the focus of recent attention, because they produce good results faster and more
efficiently.

In 1908 Dixon introduced a new resultant that generalized Bezout's resultant. Dixon’s resultant eliminated
two variables out of a system of three polynomia equations, using basic properties of determinants. Dixon
proved that if the system has a common solution, then the resultant vanishes. This is true provided that the
polynomials have nonzero coefficients that are independent parameters. These are very strong restrictions that
make the method impractical for solving most polynomial systems.

Recently, the Dixon resultant has been revisited and generalized by Kapur, Saxena, and Yang. The
restrictions on the coefficients of the polynomial system in the generalized form are very mild and the method
can be applied to dmost any system of n+1 equations and n unknowns (parametric coefficients allowed).
Subsequent work by Kapur and Saxena strongly suggests that this is the most efficient elimination method.
Their comparisons include the Macaulay and the more recent Sparse resultant.

In this paper we address the question of how to actually solve a polynomial system by using the Dixon
resultant. We describe a certain triangularization of the polynomia system based on the computation of severa
Dixon resultants. This method exploits the specia structure of the matrix whose determinant is the Dixon
polynomid. The new idea here is the following: instead of computing the determinant of this matrix directly, a
fraction-free Gauss elimination is performed based on the well-known Gauss-Bareiss algorithm. When done
properly, this elimination produces the principal minors of the original matrix on the main diagona. Each of
these minors yields a corresponding Dixon resultant with an increasing number of variables. Eventualy, all
these resultants form atriangular system whose solutions include —in general — the solutions of the original one.
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and Mathematica [12]. Our concern here is how to
1 Introduction use this efficient eimination method to solve
In this paper we discuss how to transform a system ~ Polynomial systems fast and in an automated way.
of polynomial equations into one in triangular form ~ Our new idea is to compute several Dixon resultants
by using the Dixon resultant [5]. More precisdy, we smultaneously by epr(_Jltl ng the speual structure of
use the recent generalization of this resultant by ~ the cancellation matrix that yields the Dixon
Kapur, Saxena, and Yang [7]. According to Kapur polynomla_\l. _Thl_s is done by using a fra:tlon-fr_ee
and Saxena [8], this generalized Dixon resultant is ~ Gauss elimination based on the Gauss-Bareiss
perhaps the most efficient way of eliminating a block aI gorithm [1]. A correct application of this alg_orlthm
of variables from a polynomia sysem. The y!eldsan eche]on form (_)f t_he cangellanon matrix with
comparison favors the Dixon resultant even over the dlagonal' entries its princi pal minors. Each one _of
popular Macaulay and Sparse resultants. We have these minors d_eflnes in turn a Dlxon_ resultant W|t_h
patialy verified these clams usng our own  One more vaiable than the preceding one. This
implementations of the Dixon resultant in Maple[11] ~ results into a triangular system whose solutions, in



general, include the solutions of the origina system.
Our first experiments with this new approach were
very encouraging. The method seems to be fast and
efficient. However, thisis only a preliminary step to
a pending more thorough investigation. Questions
that need to answered are: What is the exact relation
between the solution spaces of the original and the
reduced system? How do the Dixon extraneous
factors effect the origina solution? How can one tell
whether the origind system has finitely many
solutions, by solving the triangularized system?

The remaining of this paper is organized as
follows. In Section 2 we introduce the classical
Dixon resultant. Then in Section 3 we discuss the
significant improvements made by Kapur, Saxena,
and Yang. Section 4 is devoted to the process of
triangularization and two examples. For simplicity,
here we confine our discussion and examples mostly
to three polynomia equations in two unknowns,
although the method is applicable to n+1 equations in
n unknowns, with possibly parametric coefficients.
Findly, in Section 5 we discuss our conclusions so
far and adirection for future work.

2 The Classical Dixon Resultant
In this section we introduce the Dixon resultant [1]
which is a generalization to three equations of
Bezout's eimination for two polynomia equations.
We start with Cayley's formulation [2] of Bezout's
method for solving a system of two polynomia
equations. According to Kapur this approach goes
back to Euler.
Let f(x) and g(x) be polynomias in x, let d be the
maximum of the degrees of f and g, and let s be an
auxiliary variable. The quantity
f(x X
Gy =L |T00 90
x-s|f(s) g(s)
isasymmetric polynomid in x and s of degree d-1
which we call the Dixon polynomial of f and g.
Cayley (and Bezout in different notation) observed
that: every common zero of f and g is also a zero of
d(x,y) for al values of s. Hence, at a common zero,
each coefficient of s in d(x,y) isidenticaly zero. In
matrix notation we have
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where, the rows of thed” d matrix M consist of the
coefficients of the s s. Thisyields a homogeneous
system in new variables vy, ..., Vg corresponding to x°,
.., X** and equations corresponding to the
coefficients of s.
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This system has nontrivia solutionsif and only if its
determinant D is zero. This determinant D is called
the Dixon resultant of f and g. The matrix M isthe
Dixon matrix. The matrix whose determinant was
used to compute the Dixon polynomial is called the
Cancellation matrix of f and g.

So far we have seen that the vanishing of D isa
necessary condition for the existence of acommon
zero of f and g.

Dixon generalized Cayley's approach to Bezout's
method to systems of three polynomia equationsin
two unknowns. Starting with the system

f(xy)=0 g(xy)=0, h(x,y)=0 (1)
we defined asfollows
f(xy) ag(xy) h(xy)
f(sy) gy hisy)| @
f(st) g(st) h(st)
for auxiliary variables sand t. One again gets a
homogeneous linear system just as before, by setting
the coefficients of the power products st' equd to
zero. The corresponding determinant of the
coefficient matrix is the Dixon resultant D and is free
of thevariablesx and y.

Toillustrate, let us consider the following
example discussed in [6] and solved there by a
combination of Sylvester resultants.

dix,y,st) =————
YS9

Example 1 Eliminatey and z from the following
system that represents the intersection of two planes
and a sphere.

Xx-az+b=0

y-cz+d=0

X2+y2+22- R2=0
Solution:  The Dixon polynomia is given by



1
B VAT
X-az+b y-cz+d x*+y*+z*-R?
Xx-az+b s-cz+d x*+s’+z2*-R?
x-at+b s-ct+d x*+s°+t?- R?

=xt- azt +bt - ays- ady +cxy- aR?
+ax? - ads+bcy + cxs+bes+ xz + bz
Therefore, the Dixon matrix is
é aR’+ax® b+x cx+bc- adu
b+ x -a 0
&x+bc-ad 0 - a
Its determinant is the Dixon resultant
D =a(- a’R* +a’x* +b” + 2ox + x* + ¢*x®
+ 2bc®x - 2acdx +b?c? - 2abcd + a*d?)
whichisfree of y and z

@ D
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Note In practice we compute the Dixon polynomial
as the following determinant
fxy)  a(xy)  h(xy)
d(xy.st) =69 6(xy.9 hxys) O
f(y,s1)  g.(y,st) hy(y,s1)
where
f(s y)- F(xy)
X- S
f(st)- f(s,
PR (3 BR(CS)
y-t

and g, g2, hy, hy are defined similarly. This works
well when the polynomials are not very sparse and of
high degree at the same time.

To understand what Dixon proved we need the
definition of generic ndegree polynomials.

fi(xy,8)=

Definition The polynomiaspy, pa, ..., Pr+1 in
variables Xy, X, ..., X, are generic ndegree if there
exist nonnegative integersky, ko, ..., K, such that for
1£ j £ n+1 we have

_ 51 g" il in
P; = aa aj,i1 ..... i X X
=0 i,=0
In other words, generic ndegree polynomias have
nonzero coefficients that are independent parameters.
Dixon proved the following theorem.

Dixon’s Theorem For a system with three generic
2degree polynomids, the vanishing of the Dixon
resultant D is a necessary condition for the existence

of a common zero. Furthermore, D is not identically
zero.

As noted in [9] Dixon's method and proofs easily
generdlize to a system of n+l generic ndegree
polynomials in n unknowns.
This method can be applied to polynomias with
symbolic coefficients and be used for a smultaneous
elimination of a block of unknowns by using only one
calculation. Often, even if the polynomials are not
generic ndegree the method may dill yidd a
necessary condition for the existence of a common
zero. These features, along with the relatively small
Sze of the resulting determinants (compared with
other resultant methods) makes the method very
attractive.
However, if the polynomias are not generic and
ndegree, (which istypicaly the case in practice), then
one may be faced with some serious problems. For
genera polynomial systems the vanishing of the
Dixon resultant may not yield a necessary condition
for the existence of a common zero. Also the Dixon
matrix may be singular, which will make the Dixon
resultant identically zero. Thisis exactly the case for
the polynomial set
f=xy+xz+x-2z°-z+y*+y
g=x>+XzZ- X+Xy+yz-y 4
h=x*+xy+2x- xz- yz- 2z

When we try to diminate x and y from the Dixon

polynomial
2Xyz + 4tzy + 3zxs+ 5zys- 3xys- 2yt - 2z

+2y+ 2X+27° - 27t + 2XyzS+ 2txyz + 27XS
+2tzys+ 22x + 22y + 22y® + 22°x + 22°y
+2y°75- 27°Xs+22xs” + 27ys” - txy + 2tzy?
- tsy - 3itxs- 4sy- 2xs+2z°s- 3sy’® - s’y

- 3xs? +2t7° - ty? - 2Z°ys+ 2tzx + 2tzs + 2787

we get the following Dixon matrix

€7°-2 22°+7°+z 2z 228+ 7% +z 2z 0u
é

27°- 2 4z- 2 2z-1 2z 2z-1 0y
€ 272 -22°+5z-4 2z-3 -27°+3z-2 2z-3 OU
g 2z 2z-1 0 2z- 3 0 oj
g 2z 2z-1 0 2z- 3 0 og
g 0 0 0 0 0 0§

whose determinant is clearly zero.

Note that we could remove the zero rows and
columns from a Dixon matrix but then the matrix
may not even be square, so computing its determinant
would be meaningless. In the next section we see how
these important issues were resolved in [9].



3 The Kapur-Saxena-Y oung Approach
Kapur, Saxena and Y ang resolved all the problems of
the classica Dixon resultant, provided a certain
precondition holds. Their work makes this method
very practical and perhaps the elimination method of
choice. Let us describe their main theorem and
algorithm.

Suppose we have a system of n+1 polynomial
equations in n variables such that the coefficients of
the polynomias are themselves polynomias in a
finite set of parameters. Let M be the Dixon matrix
obtained as before, except that this time we aso
remove all zero columns and al zero rows from it.
(So M can be rectangular.) Let M’ be an echelon
form matrix obtained from M by using elementary
row operations except for scaling of rows. (Such a
reduction is always possible.) Let D be the product of
al pivots of M’. Under this notation we have the
following theorem from [9].

Theorem 1 (Kapur-Saxena-Yang) If at least one of
the columns of the Dixon matrix is not a linear
combination of the remaining ones, then D=0 is a
necessary condition for the existence of common
zeros of the polynomia system.

This theorem yields a simple agorithm for
obtaining the necessary condition D=0. We cadl D in
the theorem as the Kapur-Saxena-Y ang (KSY) Dixon
resultant.

Let us refer to the assumption of the theorem
about a column being a linear combination in the
remaining ones as the precondition. We have the
following agorithm.

Algorithm
Input: A set of polynomias, with numeric or
parametric coefficients.

Compute the Dixon matrix M. If the precondition

holds continue.

Row reduce M without scaling to row echelon

form M’.

Compute the product D of the pivots of M'.
Output: D, the Kapur-Saxena-Y ang Dixon resultant.
Its vanishing is a necessary condition for a solution
of the given system.

The following theorem from [9] offers a
rephrasing of the precondition of theorem 1.

Theorem 2
Let M be the Dixon matrix of a polynomia system
and let m;, my, ..., mg be the columns of M. Let
W=(Wi,Ws,..., W)" be a solution of the homogeneous
system

Mw=0U wm, +---wm_ =0
Then precondition of theorem 1 is true for the ith
columnif and only if w, =0.

Testing for the validity of the precondition is
usualy, a simple test in practice. We personaly use
a probabilistic test before he row reduce the entire
Dixon matrix M.

It is worth noting that the precondition is a rather
mild assumption on the polynomial set. Most of the
interesting examples seem to satisfy it, thus the KSY
method applies.

To illustrate the power of the KSY method, let us
now return to system (4) whose Dixon resultant
turnes out to be identically zero. The KSY Dixon
resultant is obtained by removing the zero rows and
columns of Dixon matrix shown. Row reduction of
the this matrix without scaling yields an echelon form
matrix whose product of the leading entriesis

D =8z(z- 1)(2z- 1)(22* +3z- 2)
Thisis not identically zero. In fact, solving D=0 for z
yields all the values of z that lift to the exact rational
solutions of the origina system.

Many more examples as well as Maple and
Mathematica programs of the Kapur, Saxena, and
Y ang approach can be found in [11] and [12].

4 A Triangularization M ethod

In this section we show how to combine the fraction-
free agorithms with the Dixon resultant elimination
to triangularize a system of polynomia equations.
The solution set of the resulting system contains all
the solutions of the origina system, provided that the
precondition of theorem 1 holds for each Dixon
matrix in the process.

First, let us briefly review the Gauss-Bareiss
algorithm. More details can be found in [1], [4], and
[14]. This algorithm, due to Bareiss, is based on
Sylvester's identity. The essence of the algorithm can
be seen by considering a size three square matrix.
The result of a divisonless Gauss elimination on
matrix A



g b c
A= e fyg
g h if
is an upper triangular matrix
@ b cou
E(A=g ae-bd af-cdy
g0 0 adet(A)f

The final element has the factor a and that when
removed yields det(A). In a case of alarger matrix
this removal would yield the 3" 3 principal minor.
Furthermore with alarger matrix, every eement
below or to the right of the (3,3) entry would have
this factor a at this stage. This factor is therefore
removable from the entire active submatrix. The
same comment applies for subsequent factors whose
removal will leave al the principal minors on the
diagond of the original matrix.

Let us now see how to combine the fraction-free
algorithm with the Dixon resultant elimination to
triangularize a system of n polynomia equations
in mvariables, with m® n. Such a system we view as
onein n-1 variables with parametric coefficients. For
the simplicity of the illustration of the method, let us
consider system (1) of Section 2. Instead of
computing the Dixon polynomial d in one step, we
apply afraction-free elimination to the matrix A with
determinant d from equation (3), Section 2.

fxy)  axy)  h(xy)
A=If(xy.8) 6.(%Yy,8) h(xy,s)
f.(y,;81) 9 (y:s1) h(y,st)

Fraction-free elimination of A yields a matrix of the
form

ef(xy) * *
E(N=g 0 det(A) * §
g 0 0  det(A)f

where, det(A,) isthe 2" 2 principal minor of A.
Explicitly,

det(A,) = NI y))(_ g(x, V(s y)
Note that if det(A,) is considered as a polynomial in
its own right its Dixon resultant will be free of x.
Also det(A) has Dixon resultant free of x and y. So,
we see that the diagona elements of E(A) yield Dixon
resultants that produce a system of the form f, g*, b9,
where g*isfree of xand h? isfree of xandy. If the
assumption of the theorem holds for each Dixon
matrix then any solution of the original system isaso

asolution of f, g*, h. We call this method a Dixon
triangularization of a polynomial system.

Example 2 Use Dixon triangularization to system
(4) of Section 2.

Solution: The Dixon polynomials after the fraction-
free Gauss dimination are
f=-y-2z-1

g=-ys+s+z°-y-s-s*+t-ty-y*
-tz- z- Xt- XS$- X- Xy

and

h=-2z+2z%s- ys® +2s?z- 3xs® + 2ysz?
+2yzxs + 2zxs? - 2ty - ty? + 2tz% + 2y°z
+ 2txyz + 2tzxs + 2tyzs + 2y®zs - 2yz’s
+22°y +22°x + 22 + 2ty %z + 2tzx - txy

+ 4tyz + 2tsz - tys - 3txs - 2xz’s- 3y’s
+yZ% + X+ 2XyZ + yz + 32XS - 4yS - 2XS
+5yzs - 3xys + z°x- 2tz

and the corresponding Dixon resultants yield the
following triangularization

Xy+y?-z2+xz- z+x+y
- (y*+2y- z- yz- 222 +1) Z(y+ z+1])
8(2z- 1) z(z- 1)( 2z° +3z- 2)
The solutions of the triangular system over the
rationals are
(-r,r,0),(r,-3/2,1/2),(r,-2,1),(r,-1,0),
(0,1,2),(1/2,0,1/2),(3,-5,-2)
for any rational number r. These include the
solutions of the original system
(0,0,0),(1/2,0,/2),(1/2,-3/2,1/2),
(0,-2,2),(3,-5,-2)
One hasto be careful with the application of this
method in practice and should aways check for the

validity of the precondition. The following example
illustrates this point.

Example 3 Compare the solutions of the following
system with those of the Dixon triangularization
described.

f =x%z- xz+xzy- yz

g=Xzy+XzZ- Xy- X

h=xz’y- 2xz° - yz?

+27° + X2y - 2X2- yz+22
Solution:  The rational solutions of this system are



(0, r ,0), (0,0,' 1)’ (r " :LO),
(:L' :L r)’ (_ 2’2’1)’ (:L r’l)

for any rational numbersr. A triangularization as
above yidds the following triangular system

X’z- xz+x2y- yz
yz®(yz+z- y-1)°
6z*(z° - 1)°
with rational solutions
(0,0,- 1),(10,- 1),(r,s,0),

(r!' r!1)1 (1,- :L' 1)1(:L r,l)
for any rational numbersr and s. Note that the
solution (1,-1,r) of the origina system ishot a
solution of the triangularized one. In this case the
method fails. The reason is, as one can easily verify,
that each column of the Dixon matrix of the origina
system isalinear combination in the remaining ones.
Thus, the precondition fails.

5 Conclusions

The Dixon triangularization described in the last
subsection isin its preliminary stages. Thisis only a
first step towards actualy solving polynomial
systems by this method. Some very basic questions
currently under consideration are:

What is the exact relation between the solution

gpaces of the origina and the reduced system?

What kind of assumptions are needed to ensure

that the solution space of the original and the

reduced system coincide?

How do the Dixon extraneous factors affect the

original solution?

How can one tell whether the origina system has

finitely many solutions by examining the

triangular system?

How fast is this method compared with other

methods?
Experiments indicate that this method is very fast
compared with solutions found by using Groebner
bases. It is also fast compared with other resultant
methods. Unlike the one step elimination of other
resultant methods we eliminate one variable at atime
until triangularization.

There are also some disadvantages of the Dixon
triangularization. The method may fall due to
singularities. In this case reshuffling of polynomials
may help. There are extra solutions that are not
solutions of the original system. The method is not
very efficient for high degree polynomial systems

with many equations and variables. In those cases,
however, al other basic methods also fail.
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