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Abstact In this pape& a new blind identificaticmn metha for estimatirg the impulse responsg of single-input
multiple-outpu (SIMO) FIR channedis proposed This method tha relies only on second-ordestatistics allows
to ded with channes affected by differert unknown amouns of addiive noise Numericd simulations basel on
modek alread considerd in the literature show the robustnes of the methal even with data characterize by poor

signal-to—noisratios.
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1 Introduction

The blind identification of dynamc systensis of great
relevance in many fields of signd processig . The
tem “blind” denotstheimpossibility of measurig the
input of the systen and the purpo® of blind identifi-
cation isthe reconstructia of the transfe function of a
transmissia channéstartirg from noisy measurements
performel on its output.

This problem has recaved an increasilg attention
from the researchexworking in the area of signd pro-
cessing and particula emphass has been put on the
multi—outpu case Infact, red processgof thistypeare
presehin many engineeriigapplicatiorsintelecommu-
nications sismolog, radioastronom, biomedica sig-
nd processingetc.

Blind identificatian techniqus usualy rely on alin-
ea mode of the proces tha is describe by a s of
paralld channes driven by an unknown sequenceThe
modekof thechannetareoften characterizéby afinite
impulse respons (FIR) which allows the implementa-
tion of fas numericalgorithns[1, 2].

Two different approachs can be usel for solving
the blind identification problem The first relies on op-
timization techniqus base& on highe orde statistics
[3], while the secoml group of methodologis (sut as
maximum likelihood and cross—correlatiotechniques)
uses only secoml orde statistis [4-6]. Thes meth-
ods however, give goad resuls only when the process
is characterizé by high signal-to—nois ratios and the
channed are affected by the sane amourt of noise.

In this work a new methal for the blind identification
of FIR multichanné systens is presentedThis proce-
dure tha canbeconsiderd as ageneralizatia of cross—
correlation methods has bean developed on the basis
of the resuls obtainal by the authos in the identifica-
tionof errors—invariablesmodek[8, 9]. Thisapproach
givesgoadresulsalso whenthe systenischaracterized
by poa signal-to—noisratios ard the output measure-
ment are affected by differert amouns of noise.

The pape is organizeal as follows. Sectin 2 de-
scribes the mathematichsetwp of the blind identifica-
tion problam for multiple—FIR—channelsThe problem
isthenredefing asan errors—in-variablesidentification
schene ard in this conext, Sectim 3 propose anew
solution Sectian 4 repors the resuls obtainal in test-
ing the procedue on amultichannéFIR modéd already
describé in the literature Finally, sorre concluding
remarls are reportal in Section 5.

2 Statemern of the problem
Let us conside a linea, discrete time—invariant
single—inpti multi—outpu (SIMO) systen described
by M finite impulse response with orde L (FIR’S)
hik),...,hy (k) (k=0,1...,L). Letusdenoewith
s(-) the input sequene ard with x1(-), ..., xp(-) the
correspondig M outpu sequences.

In absene of noise the modé of the proces can be
describd asfollows
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x1(k) = hyk) %sk) By introducing the covariance matrix of the bivariate

x2(k) = ho(k) x s(k) processf1(-) | x2(-)]7 defined as
: : @ f—m X x|
oK) = hg()  s(6) RERTERS <N—L—1)[ ]

where “%” denotes the linear convolution operator. x [Xl(L) | XZ(L)] 0
This multiple-FIR—channels model is useful to de- (a|ation (4) can be rewritten as
scribe the case of a single unknown source in presence
of multiple spatially and/or temporally distributed sen- s, [ 02] _0. (8)
sors; this is a situation common to many applications —C1
of signal processing. Also the assumption of FIR chan-
nels is, in general, very common in practical applica-
tions, since any infinite impulse response (lIR) system
can be well approximated by a FIR representation, by
assumingL large enough. Hpy(2) = hp(0) 28 + by (D) 2714
It can be noted, by following the idea suggested in
[4], that the outputs >(;f every cghannel pair grge related Fhal =Dzt @) m=12 ©

by the corresponding channel responses. In fact, byare coprime and the inputk) is persistently exciting

It can be proved [4, 7] that the coefficieritg(k) and
h2(k) can be uniquely determined (up to a scalar factor)
under the assumption that the polynomials

considering relation (1) for two different channels of sufficient order.
Xk = hyk) % s(k) When the data are corrupted by a_dditive noise,.the
. bk . 5 channel outputs1 (-) andxz(-) are not directly accessi-
xjlk) = hjlk)xsk) @) ble and only the noisy signals
we obtain
i) = x1() +ni()
hj(k) % xj(k) = hj(k)=[hi(k) *s(k)] y2() = x2() +n2(-) (10)

= hi(k) * [hj(k) xs(k)]  (3)

can be measured. With reference to model (10) we will
= hi(k)*xj'(k). . . .

introduce the following assumption.
It is thus possible to write an overdetermined set of lin-

ear equations involving the unknowns(k) andh; (k) Assumption 2.1

which, under suitable identifiability conditions, can be ~ — the processesi(-) andnz(-) are zero—mean, mutu-
uniquely determined up to a scalar factor. ally uncorrelated white noises, with unknown vari-
More specifically, relation (3) leads 16 — L linear ances,; ando,;,, respectively.

equations (wher&/ denotes the number of samples) in

the unknownss; (k) andh; (k) (k = O, ..., L): — the processes; (-) andna(-) are uncorrelated with

the unknown inputs(-) and, therefore, with the
[X,-(L) | Xj(L)] [_?} —0, @) noise—free signalg; (-) andxz(-).

1
Under these assumptions, the blind identification prob-

where
e = [hm(L), e (0) ]T ) lem can be stated as follows.
and Problem 2.1~ GivenN noisy observations of the chan-
nel outputsyy (), y2(+), determine the variance'ﬂ*l and
xm (0) oo xm(L) a;%, of the noises and the coefficieritg(k) andhz(k)
X, (L) = xm:(l) cee xm(L +1) . (6) (k=0,...,L).
: : Of course, Problem 2.1 is a basic step for channel equal-
xn(N—L—-1) ... xp(N—=1)

ization, i.e. for the reconstruction of the unknown input
withm =i, j. Inthe following, for the sake of simplic-  s(-).

ity, we will consider a multiple—FIR—channels model The block diagram of the unknown multiple-FIR—
with only two outputsx1(-) andxa(-). channels model is shown in Figure 1.



It has also been shown that every curve includes all

ni(k) subsequentonesi.e. those associated with higher values
of £.
> Hi(2) y1(k) When Assumption 2.1 is satisfied aid— oo, the
x1(k) pointP* = (a,s, o,,), corresponding to the actual vari-
s(k) ——— ances of the noises, belongs to all curves associated with
x2(k) models with orde¢ > L. The models corresponding
" H(D) 4’?—' y2(k) to this point are characterized by the actual coefficients
(up to a scalar facto)y (P*), c2(P*). In this theoret-
no(k) ical context, the determination of the common point in

the noise plane leads to the solution of Problem 2.1.
When Assumption 2.1 is not satisfied and/or the
In the noisy case, relation (8) does no longer hold sincejength & of the sequences is finite, the curves corre-
the covariance matriX; of the noisy bivariate process sponding to orderg > L do not present any common
[y1() | y2(-)]" is non singular (positive definite); under point. Their distance should however decrease in the
Assumption 2.1 the following relation holds neighbourhood of*. This property can be used to ob-
tain an estimate for the ordér of the channels. Once

Figure 1. Block structure of the process

¥ Sk
YL=3r+2p, (11) that this order has been choosen, a single solution for the
where identification problem can be obtained by introducing
¥ = diag[o,; I 11, o, 11 +1] (12) a suitable criterion. Possible procedures can be devel-

oped by using, for istance, the rank deficiency proper-

T ties of the matrices; (P*) (¢ = L). In fact, when

[n2() [ n2()]" Assumption 2.1 is satisfied ad — oo the following
properties hold:

is the covariance matrix of the bivariate process

3 Blind identification

Let us consider the covariance matriceg related to i) if £ > L the dimension of the null space of
different orders¢, of the FIR models, built according ¢ (P*) and, consequently, the multiplicity of its
to relations (6) (7). least eigenvalue, is equal ¢6 — L + 1);

When Assumption 2.1 is satisfied and the length of
the sequence¥ — oo, the solution of Problem 2.1 can  ii) for £ > L all linear dependence relations between
be obtained analyzing the properties of the sequence the vectors of the matrices,(P*) can be de-

of increasing-dimension matriceE{, o, ...). Let us scribed by the same sets of coefficietiscs.
consider, for this purpose, the family of matrices =
diagfoy; Ie+1. on,les1] such that For example, wheid = L + 1 it can be easily verified
ﬁ:g =Xy — ig >0 (13) that
. 0
It has been proved [8] that, for evetythe compatible A %2 c
matricess, are defined by the points of a convex curve, ker[Xpy1(P*)] =im e 02 : (16)
belonging to the first quadrant of the noise plane, whose 0 —c
concavity faces the origin. Every poiRt= (0,,, 0n,) !
on this curve satisfies the relation When Assumption 2.1 is not satisfied and/or the length

N isfinite this condition does no longer hold; in this case
the models and the noise variances can be estimated as
The related FIR models;(P), c2(P) can be obtained ~ follows [9]. Let us consider two point8 = (o, on,)

from the relation andP = (6,,, 0s,) ONn the curves of ordek andL + 1,
respectively, linked by the following relation

26(})) = X, —diag [Unllé—i-l, Un2]£+1] >0. (14)

S(P)uy(P) =0, (15)

Iy _ Om (17)
wherev;(P) = [c} (P) —cT(P)]T. Ony  Ony



P and P are thus points belonging to the straight line Note thatH(z) has 4 nonminimum phase zeros. Thein-
with slope-rate (17) from the origin. It is possible to put sequence(-) is a coloured stochastic process with
prove [10] that the coordinates &fare given by unity variance and lenghwv = 500. The output se-

_ Onq _ Onyp quences(-) andxa(-) have been corrupted by adding
= On2 =5 18)  Wwhite noisest1(-) andny(-) with standard deviations
where stdn1) and stdno) ranging from 10% to 40% of the
standard deviations of the noise—free signals. Note that
Ay = Maxeig (EHl diaglon, /1.+2, on, IL+2]) the noiseless signals are characterized by different stan-

) ) (19). dard deviations (s{d1) = 2.35 and stdx2) = 1.56) so
It is then Tp033|bIeTto s?arch among the solutions 4 the same percent amount of noise actually corre-
vL(P) = [c3 (P) —ci (P)]" satisfying condition (15)  g54nds to different amounts of noise on the channels.

the one which minimizes the cost function In correspondence to every percent amount of addi-
c2(P) o 71’ tive noise, one—hundred different simulations and iden-
J(P. P) = trace 0 c2(P) tifications have been performed. The results are sum-
’ —c1(P) 0 marized in Figures 2-3, that report the true zeros of the
0 —ca(P)d channels and the estimated ones for noise levels ranging
c2(P) 0 from 10% to 40%.
x $141(P) _lep) ngp) (20) : -
L0 —ap) il o | .
Note thatwhen Assumption 2.1 is satisfied ahe> oo ol e 4 ok .
we haveJ(P*) = 0, i.e. the minimum of the cost . -
function (20) is achieved in correspondence of the point -11 o 1 1 -
associated with the actual noise variances. 1 0 1 1 0 1
On the basis of previous considerations, the following 10% 20%
algorithm can thus be devised for the real cases.
Algorithm 3.1 i " - i ¥
1) Start from a generic poirft on the curve of order o - 1 of -
L and compute the model, (P) = [c(P) — e
ol (PN r | sl ] ar - |
. = -1 0 1 -1 0 1
2) Compute the corresponding poiRton the curve 0% 10%

of order orderL + 1 by means of relation (18); . .
Figure 2: True and estimated zeroskf(z)

3) Compute the value of the cost function (20).
The performance has then been expressed by means

4) Use a search procedure on the curve of ofder  of the normalized root-mean—square—error (NRMSE)
obtain the point associated with the minimum of gefined by
the function (20).

NRMSE = - ”J ZH &G —cl? (21

whereR is the number of runs ariglis thei—th estimate
of the coefficients: = [c] ¢]]. Figure 4 shows the
NRMSE versus the signal-to—noise ratio (SNR)

4 Numerical results

In this section the performance of the proposed method
is illustrated by means of simulations. For this purpose
the following two—FIR—channels model, extracted from
[5], has been considered

Hi(z) = —1.1836z°+ 0.4906z% — 0.3093;° stdx)
+0.40117% 4 0.1269; — 1.8522 SNR=20log 4 =

Hp(z) = 1.2965z°+ 0.0525z* +0.3410z3 The obtained results show good estimates of the the
—0.0260z2 + 0.39917 + 0.8817. FIRs coefficients even with low signal-to—noise ratios.

@B i=12. (22
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5 Conclusion

In this work the blind identification of multiple—FIR—
channels from noisy output measurements has been
approached by extending an identification procedure

developed by the authors in the context of error—in— [

variables identification.

This method allows to deal with output measure-
ments affected by different amounts of noise on the
channels. This unique feature of the proposed method is
not shared by any of the presently available procedures

The approach has been tested on a simulated system
taken from the literature and has shown a superior per-
formance also in presence of data characterized by poor
signal-to—noise ratios.
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