
Using Genetic Algorithms for Inductive Learning

R. J. ALCOCK and Y. MANOLOPOULOS

Data Engineering Laboratory, Department of Informatics,
Aristotle University of Thessaloniki,

54006, Thessaloniki,
GREECE.

Abstract:- Inductive learning techniques can be utilised to build a set of IF-THEN rules from a given example data
set. This paper presents a new technique for inductive learning called GAIL (Genetic Algorithm for Inductive
Learning) which is based on Genetic Algorithms. Common algorithms for inductive learning are briefly reviewed.
The GAIL algorithm is described and results are shown for two benchmark data sets. The results of GAIL are
compared against standard inductive learning algorithms.

Keywords:Data mining, inductive learning, genetic algorithms,machine learning,rule-based systems. Proc.pp..1791-1796

1 Introduction
Knowledge discovery is the process of finding useful
knowledge from large amounts of data. The number
of databases in the world is increasing rapidly and
valuable information, which could be used in
decision making, is often hidden in the masses of
stored data. The knowledge discovery process is
composed of a number of stages [1]:
 learn the problem domain;
 create data sets – select relevant examples from

the overall data;
 pre-process the data – remove outliers and noise

and handle missing values;
 select attributes – determine which attributes are

important;
 decide the function – e.g. classification,

prediction, clustering or association;
 choose the algorithm – e.g. neural networks,

inductive learning or statistical techniques;
 perform data mining – run the algorithm;
 visualise results - present the results in a

graphical format;
 obtain end-user reaction.

Two techniques that have been frequently employed
in data mining for classification are neural networks
and inductive learning. Both techniques are derived

from the field of artificial intelligence [2]. Neural
networks are similar to the human brain in that they
have a parallel-distributed architecture and the ability
to learn. Inductive learning techniques build up
either a decision tree or a set of IF-THEN rules from
a given example data set. These are closely related
because decision trees can be easily converted into
IF-THEN rule format. The main advantage of
inductive learning over neural networks is that it
extracts information in a form that is readable to a
human user. Whereas neural networks create
numerical weight values that cannot easily be
deciphered, rules produced by an inductive learning
algorithm are relatively easy to understand.

This paper presents a new technique for inductive
learning called GAIL (Genetic Algorithm for
Inductive Learning). Section two summarises
common algorithms used for inductive learning. The
third section presents the GAIL algorithm. Finally,
GAIL is tested against standard inductive learning
algorithms on benchmark problems and the results
are given.

2 Inductive Learning
Inductive learning algorithms create rules from a
training set containing a number of examples. Each

example consists of several attribute values and a
class type. Thus, the problem of inductive learning is
to generate rules which, given the attribute values of
an example, can determine the type. The rules
generated are of the format:

IF attribute x has value y
THEN class type is z

or:
IF attribute x1 has value y1 AND attribute x2 has

value y2 THEN class type is z

The first rule is said to have one condition and the
second rule, two conditions. Normally, the more
conditions that a rule has, the fewer examples it
covers. Therefore, rules with less conditions usually
have a greater generalisation ability.

Several inductive learning algorithms and families of
algorithms have been developed. These include ID3,
AQ and RULES. The ID3 algorithm, developed by
Quinlan [3], produces a decision tree. At each node
of the tree, an attribute is selected and examples are
split according to the value that they have for that
attribute. The attribute to employ for the split is the
one with the highest information gain for the
examples. In later work, the ID3 algorithm was
improved to become C4.5 [4]. The AQ15 algorithm,
created by Michalski et al. [5], searches for rules
which can classify the examples in the training set
correctly.

Recently, Pham and Aksoy [6-8] developed the first
three algorithms in the RULES (RULe Extraction
System) family of programs. These programs were
called RULES-1, 2 and 3. Later, the rule forming
procedure of RULES-3 was improved by Pham and
Dimov [9] and the new algorithm was called
RULES-3 PLUS. Rules are generated and those with
the highest ‘H measure’ are kept. The H-measure is
calculated based on three factors:
 the number of examples in the training set;
 the number of examples classified, either

correctly or incorrectly, by the rule;
 the number of correctly classified examples

covered by the rule.

The first incremental learning algorithm in the
RULES family was RULES-4 [10]. RULES-4

employs a Short Term Memory (STM) to store
training examples. The STM is given a user-
specified size called the STM size. When the STM is
full, the RULES-3 PLUS procedure is used to
generate rules. RULES-4 is an incremental algorithm
because when rules have been formed, new examples
can be presented and existing rules can be updated or
added to.

3 Genetic Algorithm for Inductive
Learning (GAIL)
Genetic algorithms (GAs) are computer programs
that are based on the theory of natural evolution [11].
The basis of this theory is that animals are solutions
to the problem of survival. Only animals that are
able to survive can reproduce thus only fit animals
can pass their genes to the next generation. Over
successive generations, the collective fitness of the
overall population increases.

Genetic algorithms can be applied to problems where
it is required to search for a solution. Possible
solutions are represented as genes and a fitness
function is used to determine which solutions survive
to the next iteration. Genes with a low fitness are
replaced by new genes. The genes in a GA are
represented in binary form, that is, as strings of ones
and zeros. At any one time, a population of genes is
stored. Reproduction is performed by an operation
called crossover, where two genes are combined to
create a new gene. Diversity is maintained in the
population by the mutation operation that generates a
new gene by selecting a gene and inverting one of its
elements. The proportion of times the mutation
operation is applied is determined by a user-specified
parameter called the mutation rate.

The problem of inductive learning can be seen as a
searching problem. There are a large number of
possible rules that could be created and it is
necessary to search for the set of rules giving the best
performance. Thus, it is possible to utilise GAs for
inductive learning.

Rules with different numbers of conditions generate
genes of different lengths. Therefore, the GAIL
algorithm separately processes rules with differing
numbers of conditions and then merges these rules.

In GAIL, the maximum size of rule is set to 3
conditions to ensure that the rules do not become too
specific to the training set.

The fitness, or effectiveness, of each rule is
calculated by a user-defined fitness function. The
function employed is:

Fitness = NC – 10 * IC (1)

where NC is the number of correctly classified
examples in the training set and IC is the number of
incorrectly classified examples. The GAIL algorithm
is given in Fig. 1.

When the rules are sorted, if two rules have the same
fitness, rules with fewer conditions are given
precedence as it is considered that these will have
greater generalisation ability.

4 Results
To test the GAIL algorithm, a benchmark data set,
IRIS flower classification [12], was employed. This
data set is relatively small, consisting of 150
examples, but is useful in preliminary testing of
inductive learning algorithms. Each example
consists of four attributes and a class. The three
classes in the data set are Iris Setosa, Iris Versicolor
and Iris Virginica. The four attributes are the Sepal
Length (SL), Sepal Width (SW), Petal Length (PL)
and Petal Width (PW). The data was randomly split
into two approximately equal sets: a training set
containing 80 examples and a test set of 70 examples.
The performance criterion used in all experiments
was to divide the number of correctly classified
examples in the test set by the total examples in the
test set.

As a benchmark, the RULES-4 algorithm was
employed first to classify the examples. RULES-4
has three parameters that need to be set: the STM
size, number of quantisation levels (Q) and the noise
level (NL). Accordingly to experiments carried out
in [10], for the IRIS problem, the values of Q and NL
should be 6 and 0.2, respectively. Table 1 shows
experiments carried out with different STM sizes. It
can be seen that as the STM size increases, the
performance improves. The best result (94.3%) was

obtained when the STM size equaled the training set
size. The number of rules produced was sixteen.

Next, GAIL was utilised to classify the data. GAIL
has four parameters that need to be set. These are the
number of quantisation levels (Q), the mutation rate
(MR), the number of iterations (IT) and the
population size (POP). As these parameters could
take any value, there are a very large number of
combinations. It is impossible to test every
parameter combination, therefore arbitrary values for
each parameter were chosen and all combinations of
these were tested. The values chosen were Q {4,
6, 8}, MR {0.1, 0.2}, POP {10, 20} and IT
{10000, 20000}. Table 2 shows the results of the
experiments sorted into performance order. The
conclusions made from these experiments were:
 the maximum performance achieved was 94.3%.

In all four such cases, the commonality was that
POP=20 and Q=6;

 the next best performance was 84.3%. In the five
cases with this performance, the major similarity
is that POP=20 and Q=8.

Therefore, it can be concluded that the most critical
parameter was Q and the next most important was
POP. Values of Q=5, Q=7 and POP=30 were tried
but these gave no further improvement.

GAIL generated six rules:
1. IF PL < 2.0666 THEN class is IRIS SETOSA
2. IF 0.9 <= PW < 1.3 THEN class is IRIS

VERSICOLOR
3. IF 1.3 < PW < 1.7 THEN class is IRIS

VERSICOLOR
4. IF PW >= 2.1 THEN class is IRIS VIRGINICA
5. IF PL >= 5.9333 THEN class is IRIS

VIRGINICA
6. IF 1.7 <= PW < 2.1 THEN class is IRIS

VIRGINICA

All the rules generated have just one condition. It is
considered that this is because rules with one
condition have higher fitness values than multi-
condition rules, which are less general. The rules
generated employ just two attributes (PL and PW).
Therefore, GAIL can also be employed in knowledge
discovery as an attribute selection method.

To further test the ability of GAIL, data about the
heart condition of patients in Cleveland, USA, was
utilised [13]. The data set contains thirteen attributes,
regarding information about patients and a class field
showing whether the patient has a heart condition or
not. Previous results with this data set show that it is
more difficult to classify than the IRIS data set. Aha
et al. [14] tested the C4 algorithm, developed by
Quinlan, on this data set and achieved an accuracy of
75.5%. In the same paper, they developed an
algorithm called IB3, a robust extension of the
nearest neighbour classifier, obtaining a performance
of 78.0%. Gennari et al. [15] employed the
CLASSIT conceptual clustering system for this data
set, recording an accuracy of 78.9%.

The heart data set consists of 303 examples. Six
examples contain unknown data values and these
were removed as the current version of GAIL does
not deal with unknown values. The remaining
examples were randomly split into a training set and
a test set, each consisting of 148 examples. The first
experiments performed using GAIL were to
determine the value for Q as this was found to be the
most sensitive parameter on the IRIS data set. For
each value of Q, tests were carried out for an
arbitrary population size of 30 and 30000 iterations.
The average test set performance for each value of Q
is shown in Table 3. The optimum value of Q for
this data set was found to be 3.

Next, using the value of three for Q, the values of
POP and IT were altered to determine if they could
improve the performance. Each experiment was run
five times and the average results are shown in Table
4. The best performance was obtained with a
population size of 60 and 50000 iterations. It was
seen that as the population size was increased, the
performance improved.

GAIL produced a large number of unclassified
examples on the heart data set, i.e. examples for
which no rules were found to classify them either
correctly or incorrectly. It was considered that a
major contributory factor to this was the adopted
fitness function that placed a heavy penalty on
misclassifications. Therefore, the fitness function
was changed to:

Fitness = NC – GAIN * IC (2)

Then, experiments were carried out, with a
population size of 60 and using 50000 iterations, to
determine the optimal value of GAIN. Results are
shown in Table 5. The best performance was 81.8%,
with a GAIN of 3. The large variation in
performances with different values for GAIN
indicates the importance of adopting an appropriate
fitness function in obtaining optimal performance.

5 Conclusions
This paper has introduced a new technique, called
GAIL, for inductive learning based on genetic
algorithms. On the benchmark IRIS data set, GAIL
is able to achieve the same performance as a
recently-developed inductive learning algorithm
(RULES-4). Also, GAIL is able to generate a more
compact rule set. With the heart data set, GAIL gave
a higher performance than previously-reported results
with the aid of a suitable fitness function. These
results show the potential for using genetic
algorithms for inductive learning.

It is considered that with the IRIS test data set
employed with six equally-spaced quantisation levels
(Q=6), 94.3% may be the maximum accuracy
achievable. It was also seen that the choice of the
correct number of quantisation levels was crucial in
obtaining optimal performance. Therefore, future
work on GAIL and RULES-4 should be focussed on
improving quantisation techniques. In particular,
quantisation levels which are different for each
attribute and inequally-spaced quantisation levels
could be adopted.

A problem with using genetic algorithms for rule
induction is the large number of iterations required to
reach a solution. Further work should be carried out
in this area into guiding the search more effectively.
Research should also be performed into determining
the most effective fitness function.

Acknowledgement
The authors would like to thank Robert Detrano,
M.D., Ph.D from the V.A. Medical Center, Long
Beach and Cleveland Clinic Foundation for

collecting the data on heart patients used in these
experiments.

References
[1] Fayyad U, Piatetsky-Shapiro G and Smyth P. The

KDD Process for Extracting Useful Knowledge
from Volumes of Data. Communications of the
ACM. Vol. 39, No. 11, 1996, pp. 27-34.

[2] Pham D T, Pham P and Alcock R J. Intelligent
Manufacturing. in Novel Intelligent Automation
and Control Systems, Vol. I. ed. Pfeiffer J.
Papierflieger, Clausthal-Zellerfeld, Germany.
1998. pp. 3-18. ISBN 3-89720-201-8.

[3] Quinlan J R. Learning Efficient Classification
Procedures and their Applications to Chess End
Games. in Machine Learning, an Artificial
Intelligence Approach. Eds. Michalski R S,
Carbonell J G and Mitchell T M. Morgan
Kaufmann, San Mateo, California, 1983, pp. 463-
482.

[4] Quinlan J R. C4.5: Programs for Machine
Learning. Morgan Kaufmann, San Mateo,
California. 1993.

[5] Michalski R S, Mozetic I, Hong J and Lavrac N.
The Multi-Purpose Incremental Learning System
AQ15 and its Testing Application to Three
Medical Domains. Proc. 5th Int. Conf. On
Artificial Intelligence. Philadelphia,
Pennsylvania. (Morgan Kaufman, San Mateo,
California). 1986. pp. 1041–1045.

[6] Pham D T and Aksoy M S. An Algorithm for
Automatic Rule Induction. Artificial Intelligence
in Engineering, Vol. 8, 1994, pp. 277-282.

[7] Pham D T and Aksoy M S. RULES: A Rule
Extraction System. Expert Systems Applications.
Vol. 8, 1995, pp. 59-65.

[8] Pham D T and Aksoy M S. A New Algorithm for
Inductive Learning. Journal of Systems
Engineering. Vol. 5, 1995, pp. 115-122.

[9] Pham D T and Dimov S S. An Efficient
Algorithm for Automatic Knowledge
Acquisition. Pattern Recognition. Vol. 30, No.
7, 1997. pp. 1137–1143.

[10] Pham D T and Dimov S S. An Algorithm for
Incremental Inductive Learning, Proc. IMech E,
Vol. 211, No. 3, 1997, pp. 239-249.

[11] Goldberg D E. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-
Wesley, Reading MA. 1989. ISBN: 0201157675

[12] Fisher R A. The Use of Multiple Measurements
in Taxonomic Problems. Annual Eugenics, Vol.
7, Part II, 1936, pp. 179-188.

[13] Blake C, Keogh E and Merz C J. UCI
Repository of Machine Learning Databases.
Irvine, CA: University of California, Department
of Information and Computer Science. 1998.
[http://www.ics.uci.edu/~mlearn/MLRepository.h
tml].

[14] Aha D W, Kibler D and Albert M K. Instance-
based Learning Algorithms. Machine Learning,
Vol. 6, 1991, pp. 37-66.

[15] Gennari J H, Langley P and Fisher D. Models of
Incremental Concept Formation. Artificial
Intelligence, Vol. 40, 1989, pp. 11-61

STM size Average %
(3 runs)

20 86.2
40 91.4
60 93.3
80 94.3

Table 1 Effect of Varying the STM Size with
RULES-4

Q MR POP IT
(000)

Average %
(3 runs)

6 0.1 20 10 94.3
6 0.2 20 10 94.3
6 0.1 20 20 94.3
6 0.2 20 20 94.3
6 0.1 10 10 84.3
8 0.1 20 10 84.3
8 0.2 20 10 84.3
8 0.1 20 20 84.3
8 0.2 20 20 84.3
6 0.2 10 20 82.4
4 0.1 20 20 80.5
4 0.2 20 20 80.5
8 0.2 10 20 79.5
8 0.2 10 10 78.5
4 0.1 10 10 75.7
4 0.2 10 10 75.7
4 0.1 10 20 75.7
4 0.2 10 20 75.7
6 0.2 10 10 75.2
4 0.1 20 10 75.2
4 0.2 20 10 74.3
8 0.1 10 20 73.4
6 0.1 10 20 72.4
8 0.1 10 10 71.4

Table 2 Different Parameter Settings for GAIL in
Sorted Order

Q Average test set performance % (5 runs)
3 54.7
4 41.9
5 42.3
6 45.7
7 50.8
8 49.3

Table 3 Determining Q for the Heart Data Set

IT (000)

POP

30 40 50 60 Av.
%

30 61.1 60.4 56.8 49.5 57.0
40 57.4 67.4 61.2 57.6 60.9
50 67.0 64.7 67.8 67.8 66.8
60 68.2 69.5 71.1 67.3 69.0
Av. 63.4 65.5 64.2 60.6

Table 4 Determining POP and IT for the Heart Data
Set

GAIN Average test set performance % (3 runs)
0 54.5
1 64.2
2 78.4
3 81.8
5 80.2

10 71.8

Table 5 Altering the Gain of the Fitness Function

read in the training data set
quantise the attributes into Q quantisation levels
for (Number_of_Conditions is from 1 to 3)
{

randomly generate an initial population of rules
for (Iterations is from 1 to Number_of_Iterations)
{

calculate the fitness of the rules using the fitness function
calculate R, a random number between 0 and 1
if R < mutation rate (MR) then generate a new gene by mutation

else generate a new gene by crossover
replace rule with lowest fitness with the new gene

}
}
sort the rules into order according to fitness
test the rules on the training set and remove any not used (pruning phase)

Fig. 1 GAIL Algorithm

