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MEXICO

Abstract: - The main step of some system design is the optimization strategy that minimizes of the objective
function and determines the optimum values of all system's elements. The evaluation of the operations number for
different strategies gives the possibility to select the optimum or quasi-optimum strategy that is needed of the
minimum computer time.

From the optimization theory point of view the traditional design strategy can be determined as an optimization
of some objective function with constraints. The model of the system is the constraints in that case. From the other
hand it is possible to use the general design strategy or control theory for the system design.

The evaluation of operations number for the system design has been done for general design strategy. More
general methodology for the system and circuit design was elaborated by means of optimum control theory
formulation. By this theory the problem of the system design can be formulated as the classical problem of the
optimal control for the minimum time. In that context the aim of optimal control is to result each right hand side of
the main system of the differential equations  dxi / dt = f i ( x1,x2,...,xN,u1,u2,...,uM)  to zero for the final time tfin and
minimize the total computer time  T.  These equations include the special control functions u1,u2,...,uM  that are
introduced into consideration artificially to generalize the total design process. Optimum dependencies of these
control functions uj give us the minimum computer design time. This approach generalizes the design process and
generates infinite number of the different design strategies.  The problem of the optimal behavior definition of the
control functions uj  can be solved adequately by means of the special optimization procedure or by means of
Pontryagin's maximum principle.

The analysis of different types of electronic systems shows that the optimal strategy can be fined by control
theory formulation and maximum principle. In that case it is possible to reduce the total operations number to many
times and accelerate the design process.
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1 Introduction
The electronic system design by traditional
methodology includes the formulation of the principal
equation system, definition the number of independent
variables  K and  the number of dependent variables M
and using some type of optimization procedure. The
principal equation system can be formulated as
algebraic system or integral-differential system. The
systems model can be determined as the equation
system relation between  independent and dependent
variables. From the optimization problem point of view
this system can be determined as the system of
constraints for the objective function optimization.

On the other hand it is possible to use the idea of
general optimization  [1,2]  for the electronic system
design.  On this way the independent variables vector
includes arbitrary number of the systems components
from  K  to  K+M. In that case the objective function
includes additional penalty terms that simulate the
relation equations. This strategy can reduce the total
computer design time.

In this paper one approach for the system design is
proposed.  This method is based on the optimum
control theory formulation and serves as the
generalization of different design strategies. It can
reduce considerably the necessary computer design
time.



2 The Operations Number Evaluation 
for General Design Strategy

For the computer time comparison of different kinds of
design strategy and for optimal algorithm elaboration it
is necessary to evaluate the operations number.

By general design strategy, in case when the
number of independent parameters is variable and equal
to   K+ Z   the following two systems are used:
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In this case the total operations number  N   for the
solution of the systems  (1), (2)  is  equal to:
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when the Newton's method is used.

In case of  Z=0  the formula  (3)  gives us the
operations number for traditional design strategy and
when Z=M formula it is a modified traditional design
strategy.

Sometimes the necessary operation number  C  for
the objective function  C(X) calculation has no
dependency from the independent parameters number
K+Z,  but for the majority of electronic systems is in
proportion to the sum K+Z ( ( )C c K Z= + ). Formula (3)

in this case is transformed into following expression:
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Analysis of the operations number  N  as the
function of  Z   by formula (4)  gives us the conditions
of the minimum computer time. In case when the
system (2) is the linear one this general design strategy
almost has no preference in computer time as shown in
[1]. Formula (4) gives the optimum point  Z opt  that is

within the region  [0, M]  for the nonlinear system  (2).

In more general case, when the system's model can
be separate on two parts as linear and nonlinear we
have the following systems :
a) the nonlinear part is given by

( )g Xj = 0

( )j r M Y= −1 2, ,... ,

    (5)
b) the linear part is given by

A X  =  B

where  [ ]r ∈ 0 1, ;   A and B  are  matrices  of  the order
( ) ( )1 − ⋅ −r M Z .  For this case the formula for the
operations number has the following form:
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Analysis by this formula shows that for the
majority of the practice problems it is correct that the
optimum point of the function  N(Y,Z)  is within the
dominion. This case is illustrated  in  Fig. 1.

Fig. 1  Behavior of the function  N(Y,Z).

The optimum point (Yopt ,Z opt ) minimizes the

necessary computer time for the large system design
and has dependency from the electronic system  size
and topology. This optimal point can be fined by
different methods, for example by ordinary gradient
method.



The optimization of the space dimension number of
independent parameters leads to reduction of the total
operation number and therefore to reduction of the total
computer time for electronic system design. The
analysis of different types of electronic systems shows
that the optimal space dimensions of independent
parameters can reduce the total computer time in 10 -
50 times. This optimal space dimension has dependency
from electronic systems' size and topology.  In this
work  the problem of optimum order of the space
dimension is solved by optimal control theory method.
The total computer time is served as the objective
function for the optimal algorithm finds.

3 Design Strategy by Control Theory 
Formulation

It is possible to define the problem of the optimum
algorithm construction for more general case. We can
determine the problem of a large system design as the
problem of optimal control.

The principal equations system can be determined
as:

( )dx

dt
f X Ui
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where N=K+M; X is the variables vector
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control variables ( )U u u uM= 1 2, ,..., ;  uj ∈Ω ; { }Ω = 0 1; .

The sense of the variable  u j  is presence (when u j =0 )

or absence  (when  u j  = 1) of the equation number  j  in

the system  (2).  The function ( )f X U0 ,   is determined
as the necessary calculation time for one step of the
system  (7) integration.  In this case the variable x0   is
determined   as the total computer time for the
electronic system design.

The functions of the right part of the system  (7)
are determined as:
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where  x i
'  is equal to  ( )x t dti − ;   ( )η i X    is the

implicit function  ( ( )x Xi i= η  )  that is determined by
the system:     ( ) ( )1 0− =u g Xj j

;   j M= 1 2, , ... , .

In this case we determine the problem of some
system design as the classical problem of the optimal
control. In that context the aim of optimal control is to
result each function ( )f X Ui ,  to zero for the final time
t fin  ,  ( ) ( )( )f X t U ti fin fin, = 0  and minimize the total

computer time x0  . The minimum-time problem for the
system (7) with non-continued or non-smoothed
functions (8) can be solved most adequately by means
of Pontryagin's maximum principle [3].

For the classical Pontryagin's form optimal control
problem formulation it is necessary to define the
conjugate system for the additional functions  ψ i

 :
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Hamiltonian is determined as :
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This function has supreme value during the optimal
trajectory with the Pontryagin's maximum principle:
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The main problem of the maximum principle
application in that formulation is unknown vector  Ψ 0

of initial values of the functions ψ i
. This problem has

adequate solution only for linear functions  ( )f X Ui , ,
for example in  [4]. For the nonlinear case it is possible
to use one iterative algorithm  for the solution of the
problem   (7) - (11).

This method in maximum principle formulation that
is used for the solution of the optimal control problem
(7)-(11)  is based on the boundary problem solution for

( )2 1× +N  order equations system (7), (9). The iteration



process for the numerical integration of this system
includes consecutive iterations of Cauchy problem
solution.
The strategy of  this method is that:
1. The initial value of  vector  X 0

 has been given,
because it is known ; ( )X x x xN0 10 20 0= , , ..., .

2. The initial value of vector Ψ0
 has been  given

arbitrary;  ( )Ψ0 10 20 0= ψ ψ ψ, , . . . , N
 .

3. The vector of control variables  U  is fined by the
formulas  (10), (11).
4. Two systems  (7), (9) are solved in one time step ∆ t
and new values of  vectors  X   and   Ψ    are
determined.
5. The conditions ( )f X Ui , <ε  are verified for all index

i . If this conditions are right, in this case we pass to
step number  6, if  they are not right  we return to   step
3.
6. In that case we have the solution of the problem  (7)-
(11). We have the functions  X(t), U(t), ( )Ψ t   and the
total computer design time  T  that is equal to x0 . This
solution is not optimal because it has been obtained
with arbitrary value of the vector Ψ 0

 that is not correct.
However, this solution is the first approximation to the
optimal solution.

To minimize the total computer design time T it is
necessary to improve the initial approximation  Ψ 0

 .
This problem can be solved by different methods.   First
of all it is  possible  to  use some  gradient  method
with   the calculation of the T function's gradient
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gradient. Other way is the solution of the equations
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i 0
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method.  In that case it is necessary to calculate the
matrix of the second derivatives but the number of
iterations can be reduced significantly.

4 Examples
Two simple circuits have been investigated to
demonstrate the optimal control theory approach.

4.1   Example 1
In Fig.1 there is a nonlinear circuit that has 4
independent variables (K=4) as admittance:
y y y y1 2 3 4, , ,   and 3 dependent variables (M=3) as
nodal voltages:  V V V1 2 3, ,   in the nodes 1, 2, 3.

Fig. 1  Circuit topology for K=4 and M=3.

We suppose that other elements are defined and  each
nonlinear admittance has dependency by the law
y a b Vni ni ni i= + ⋅  , where  i = 1 or 2,  b bn n1 2 0001= = . .
The results of the analysis of a complete set of the
design strategies that were obtained by general design
idea are given in Table 1.

Table 1. A complete set of the design strategies by general
design idea for example 1.

The first line of this table corresponds to the traditional
design strategy.  All control functions u j   (j = 1, 2, 3)

are equal to 0. We have two traditional parts of the
design process in this case. One part is the system of
three equations for three nodal voltages and the other is
the optimization procedure. The gradient method is
used for all examples as the optimization procedure.
The total computer design time in this case is equal to
16.53 sec. It is interesting that the modified traditional
strategy (u j  = 1;  j = 1, 2, 3 ) has the total computer

design time for this example almost 3 times more than
traditional strategy. It can be explain by very small
values of the non linearity parameters b bn n1 2,  .
More interestingly is that among the rest of the
strategies exists the strategy number 5 that has



minimum of the design time for all strategies that can
be defined by means of general strategy idea. This
design time is equal to 9.28 sec and is almost 2 times
less than for traditional strategy. However this strategy
is not optimal. It is necessary to find the optimal
strategy by means of some optimization procedure or
by maximum principle.
Data of the optimum and some quasi-optimum
strategies are given in Table 2.

Table 2. Optimum and quasi optimum strategies for
example 1.

All given strategies have computer design time less than
the best strategy number 5 from Table 1. The strategy
number 8 is optimum one and has the minimum
computer design time that is equal to  4.45 sec.  This
strategy has the gain almost four times with respect to
the traditional design strategy.
The behavior of the control functions  u u u1 2 3, ,  during
the total design process is shown in Fig. 2.

Fig. 2  Optimum dependency of the control functions for
example 1.

These time dependencies have no any definite law and
can be obtained by means of a special optimization
procedure with the maximum principle application.

4.2   Example 2
In Fig. 3 there is a nonlinear circuit that has 6
independent variables as admittance: y y y y y y1 2 3 4 5 6, , , , ,
and 5 dependent variables as nodal voltages:
V V V V V1 2 3 4 5, , , ,   in the nodes 1, 2, 3, 4, 5.

Fig. 3   Circuit topology for K=6 and M=5.

The results of the analysis of a complete set of the
design strategies that were obtained by general design
idea are given in Table 3.

Table 3. A complete set of the design strategies by general
design idea for example 2.



There are 32 different strategies in this case. The first
line of the table corresponds to the traditional design
strategy. The last line corresponds to the modified
traditional strategy. For this example the modified
traditional strategy has gain in computer time more than
5 times with respect to traditional strategy, but it is not
the most effective. Among all these strategies there are
two strategies, number 15 and number 31 which have
the total design time less than modified traditional
strategy. The strategy number 31 has design time that
equals to 18.89 sec, but as for the example 1 this
strategy is not optimal either. Optimum trajectory can
be fined by special optimization procedure.

Data of the optimum and some quasi optimum
strategies are given in Table 4.

Table 4. Optimum and quasi optimum strategies for
example 2.

All strategies of this table have computer design time
less than the best strategy number 31 from Table 3. The
strategy number 17 is optimum one and has the
minimum computer design time that is equal to  2.47
sec.  This strategy has the time gain 68 times with
respect to the traditional design strategy and 12 times
with respect to the modified traditional strategy.
The behavior of the control functions  u u u u u1 2 3 4 5, , , ,
during the total design process is shown in Fig. 4.

Fig. 4  Optimum dependency of the control functions for
example 2.

These time dependencies have no any definite law and
were obtained by a special optimization procedure too.

5 Conclusions
The optimum design algorithm depends on the number
and the order of the equations that are excepted from
the main system. The problem of the optimum
algorithm construction can be solved more adequately
on the base of the optimum control theory application.
Maximum principle serves in that case as the base for
all control functions determination.  In that case we
have as the result the optimal trajectory X and optimal
dependency of the control functions u j . These optimal

control functions can be used for the minimization of
the computer design time for some systems that have
similar topology. In that case it is possible to reduce the
total computer time for a large system design.
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