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Abstract: This paper deals with absolute stability conditions for multivariable systems with
time-varying memoryless nonlinearities subject to sector conditions, and with variable delays.
Assuming essentially a sector condition on the rate of variation of the nonlinearities and a bound
on the derivative of the delays, we provide a stability criterion independent upon the size of the

delays, expressed as a LMI condition. A numerical example of application is treated.
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1 Introduction

We consider here a multivariable nonlinear con-
trol system given by the following delay differen-
tial equation:

{;;; = Az + Y[ Azt — h(t)) — By(t,y),
y=Cz+ Y, Ca(t — Iy(t)),

where n,p € N\ {0}, L e N, z € R*, y €
RP, A € R B € R™P () € RRFY" () <
hi(t) < -+ < hp(t) < h for any t € R, for
a certain h € R, and argh)(s) = z(t + s) for
s € [—h,0]. For constant delays, sufficient con-
ditions for absolute stability of system (1) are
provided in [12, 11] for stationnary nonlineari-
ties, and in [2] for nonstationary nonlinearities.
Also, a generalization of circle criterion is pro-
vided in [5] for systems with variable delays. The
previous results are delay-dependent, in the sense
that their hypotheses take into account explicitly
the magnitude of the delays.

delay systems, variable delays, absolute stability, delay-independent conditions,

On the other hand, when the latter are un-
known, one may be interested [8] by delay-
independent conditions, more precisely by results
independent upon the size of the delay. Delay-
independent absolute stability results have been
given in [6, 14], in the case where the nonlinearity
is stationnary with undelayed input (y = Cz(t)
in (1)). A generalization to general inputs and
nonstationary nonlinearities is given in [3].

In the present paper, the previous results are
now generalized, in order to apply to systems
with variable delays. As in [3], the conditions
are expressed in terms of Linear Matrix Inequal-
ities [4]. Also, the nonstationarity of the nonlin-
earities is taken into account by assuming a gen-
eralized sector inequality on the derivative of the
nonlinearity, an idea borrowed from [13, 7] (for
rational systems) and expressed under a slightly
weaker form in [1]. The main hypothesis on
the delays is that their variation wrt time is
bounded.

For the sake of simplicity, the results are given
only for a system with two delays, namely (2).



Extending the method to general case (1) only (H1) The nonlinearity v is measurable, decen-

necessitates some (cumbersome) computations.

{jc = Az + Aqz(t — ho(t)) — B(t,y),

_ (2)
y = Cxz + Cpx(t — hg(t)) .

In Section 2 are formulated criteria without

tralized [9] (that is: Vi = 1,p, ¥(t,y) =
¥;(t,v;)), and there ezxists a diagonal matriz
K > 0 such that, V(t,y) € Rt x RP,

P(t,y) ($(t,y) — Ky) <0.

restrictions on the variations of ¢ wrt time (The- (H2) The functions hq, hg are AC, and there ez-

orems 1 to 3). Stronger criteria are given in Sec-
tion 3 (Theorems 4 to 6). In Theorems 1 and 4,
ho and hg are independent, sharper results are
provided in the case where h, = hg (system (3),
Theorems 2 and 5) or ho, = 2hg (system (4),
Theorems 3 and 6). Finally, an example illus-
trating the method is provided in Section 4.

z = Az + Agx(t — h(t)) — By(t,y), 3)
y =Cz+ Cgx(t— h(t)) .
T = Az + Anx(t — 2h(t)) — By(t,y), (1)
y = Cz+ Cgz(t — h(t)) .

We do not consider here the issues of existence
and uniqueness of the solutions, as they have
been extensively studied: in the sequel, we only
assume the existence of global solutions of (1),
ie. V¢ € C([-h,0;R™), Jz € C([—h,+0)),
z absolutely continuous (AC) on [0,+00), s.t.
xgh) = ¢ and (1) holds almost everywhere (a.e.)
on [0, +00). The results given below concern the
asymptotic behavior of these global solutions.

Notations For the sake of simplicity, one
writes ,Zq,%8,Tag,Za8,Ys, "V, Y3 instead of
2(t),a(t — ha(®),a(t — hy(t)),a(t — ha(t) —
hﬁ (t))’ .’L‘(t - 2h5(t))> y(t - hﬁ (t))> ¢(t; y(t))a ’lﬁ(t -
hg(t),y(t — hg(t))). Also, I, denotes the n x n
identity matrix, 0,,xp a null nxp matrix (0,, when
p = n). Last, for M} square matrices, k = 1, K,
diag{Mi, ..., Mk} is defined recursively by

M, 0
0 diag{My,...,Mg}) -
2 Delay-independent LMI cri-
terion

Theorem 1 (General case). Assume that the
following Hypotheses hold.

ists 6 € (0,1] such that
ha,hg <1—-6 t— a.e.

Assume that LMI (5,6) is feasible (where the
symmetric matrices P,Qq, Qs € R™™™ are the
variables). Then the origin of system (2) is uni-
formly globally asymptotically stable.

P>0, QuQz>0, R<O. (5)

Sketch of the proof. Consider the following Lia-
punov function candidate

0

v(t, ) % 6(0)T Pg(0)+ / 9(5)7 Qud(s) ds

—ha(t)

0
T / ()T Qpd(s) ds .
—hg(t)

To prove Theorem 1, differentiate V(t,xgh)) wrt
time and, adding the term —2¢7 () — Kvy) (which
is nonnegative, due to sector condition (H1)),
write that V < X(¢)TRX(t) t—a.e., where

X(t) def (2T yT 2T xg)T Now, the hypothe-
ses on the regularity of the global solutions
and of the delays imply that the map t +—
V(t) is AC, so 3¢ > 0 “small”, such that
V() + e fylle(s)? ds = V(0) + {45 ds +
c fg |lz(s)||> ds is a nonincreasing function of
t, as its derivative is a.e. nonpositive. On the
other hand, 3¢’ > 0 such that, V(¢,¢) € R" x
C([—h,0]), cl¢0)]| < V(t,9) < Flldlle—n,0)-
One then achieves the proof as in [10, Theo-
rem 31.1]. [

It is also possible to get local stability results,
see [2, 3]. Results may be extended without dif-
ficulty when (H2) is replaced by: hy < 1 — 6,,
ilg <1-—ég.

We provide now two sharper results, in the
case where h, = hg (in which case z, = z3) or

ho = 2hg (and then izﬂ = hT“ < 12;6)



ATP+PA+Q,+Qs C'K—-PB PA, 0,
def KC - BTp —21I, Opxn  KCp
R = T (6)
ATp Onxcp —6Qa 0y
0, CiK 0, —6Qp
ATP+PA+Qa+Qs CTK—PB PA, 0p,
R, def KC - BTP —2I, Opxn  KCp )
2T AZZP Onxp _6Qa On
0p CgK On - #Qﬂ

Theorem 2 (Case ho = hg). Assume that
Hypotheses (H1), (H2) hold and that LMI (8,9)
is feasible. Then the origin of system (3) is
uniformly globally asymptotically stable.

P >0, R; <0.

Q20, (8)

det ATP+PA+Q CTK—-PB PA,
€

rRE | KC-B'P —2I,  KCj
ALPp CIK  —5Q
(9)

Theorem 3 (Case ho = 2hg). Assume  that
Hypotheses (H1), (H2) hold and that LMI (7,10)
is feasible. Then the origin of system (4) is
uniformly globally asymptotically stable.

P>0, QuQs>0, Ry<O0. (10)

3 Delay-independent LMI cri-
terion for nonlinearities with
restricted time-variations

The results of Theorems 1 to 3 are in a sense
analog to circle criterion: they use as Lyapunov
function a quadratic function of the state x(h),
and are valid for systems with nonstationary
nonlinearities as well. In order to refine the
analysis, one may try to mimick the argument
leading to Popov criterion and add to V' a Lur’e
term, namely 2>7 | 7, K; [° vi(t) Pi(t, z) dz.
However, when the input of the nonlinearity is
delayed (Cp # 0), this operation introduces in 1%

terms in z,3 and zgg. To counterbalance them,

one is led to introduce new terms in V, in order
now to bound V by a negative definite quadratic
form in z,%, 4, 28,%8, Tag, Tgg. The following
result 1s proved by considering the evolution of

Va(t, xt )) where the Lyapunov function Vjp is
defined (for ¢ > h) by

Va(t, 8) SVt ¢) + $(—hs(t)) Pag(—
0
+ / ()" Qupd(s) ds
—hq (t)_hﬂ (t)
0
4 / ()" Qas(s) ds
—2hp(t)

p (C9):(0)
+2Z77iKi/0 Yi(t, z) dz .
=1

hg(t))

Theorem 4 (General case). Assume that

Hypotheses (H1), (H2) hold, together with

(HO) For any y € RP, t — (t,y) is locally Lip-
schitz (and hence t-a.e. differentiable), with
a Lipschitz constant locally integrable wrt y.

Assume that there exists diagonal matrices Dj,
j = 1,3 such that LMI (6,12,15) is feasible
and that the following Hypothesis holds (with the
same 1 and D;)

(H3) For almost any t € Rt , Vy € RP, Vi = 1, p,

,/yiaiﬁi
il )

(t,2) dz — D1,3y; — Daiyiti(t, i)

— D3 i1i(t, yi)2> <0. (11)

Then the origin of system (2) is uniformly glob-
ally asymptotically stable.



P> 05 PﬂaQaaQﬁaQaﬂaQﬂﬁ > 0) n= dlag{m},C = dlag{fz} >0 ) Rﬁ <0. (12)
P> 07 P,B} QaaQﬂ7 Qaﬁa Qﬁﬁ > 07 n= dlag{”h};C = dlag{(z} >0 3 Rﬁ,Q <0. (14)

Sketch of proof. First, verify  that  the
map t Vg(t,w?h)) is AC, essen-
tially because Vt,t' € RT, Vi = 1,p,
7O it 2) de = [ it 2) de| <t -

#1 S8 Nilz) dat K mac{ ()], Ly (8]} |a(t)—
yi(t')|, where )\; is the Lispchitz constant of
1, defined by Hypothesis (H0). Also, as
~1 + hg + hg,—1 + 2hg < 1 — 25, one
gets, by addition of —21/):7’;4“(1/)5 - Kyg) > 0,
that V3 < Xp(t)"RsXs(t) t—ae., where

def .
Xs(t) = (27 o7 zl :cg '(ﬁg wgﬂ wgﬁ)T. Esti-

mates as in the proof of Theorem 1 (but now in
space C([—2h,0])) lead to the conclusion, again
by [10, Theorem 31.1]. [ )

Theorem 1 appears as a subcase of Theorem 4.
In the case where the delays are constant and do
not appear in the input nonlinearity (Cg = 0),
the results given in [6, 14] are found.

Hypothesis (H3) is a generalized sector condi-
tion, fulfilled e.g. when there exists a measurable
map A with diagonal matrix values, s.t. t—a.e.
in RY, vy € R, Ty (5(Ly) - Ay) < o,
and the matrices D; are then given by D; =
Tess sup{A(t) : ¢t > 0}, Dy = D3 = 0. Mul-
tiplication by 7; in (11) indicates that this con-
straint is inactive when 7; = 0. If such a formula
is fulfilled for n # 0, consider the nonlinearity
sgnn (¢, y) + 5(1 — sgnn)Ky instead of 9(t,y),
see [2, 3].

Sharper results are given in the sequel, in the
case where h, = hg (and then z, = zg, Top =
zgg) or hq = 2hg (zo = g3, 1—iLa—iLﬁ < 13—36)

Theorem 5 (Case ho = hg). Assume that
Hypotheses (HO0), (H1), (H2) hold, that there
exists diagonal matrices D;, j = 1,3 such that
LMI (9,13,16) is feasible, and that Hypothe-
sis (H3) holds (with the same n and D;). Then

the origin of system (3) is uniformly globally
asymptotically stable.

Theorem 6 (Case h, = 2hg). Assume  that
Hypotheses (HO0), (H1), (H2) hold, that there
ezists diagonal matrices Dj, j = 1,3 such that
LMI (7,14,17) s feasible, and that Hypothe-
sis (H3) holds (with the same 1 and D;). Then
the origin of system (4) is uniformly globally
asymptotically stable.

4 Tllustrative numerical exam-
ple

As an illustration, let us consider the following
scalar equation
T =—x+4 0.9z,

—1(t,z + 0.1zg) , (18)

which may be written under the form (2) with
A=-1,4,=09, B=1C=1, Cs=0.1,

and suppose that Dy = D3 = 0. All computa-
tions to be presented have been achieved using
the Scilab package LMITOOL'.

For given values of D; and 4, the maximal
value of K allowed for using the Theorems is
shown in Tables 1 to 3. This defines a robust-
ness margin, which is larger when § is closer to
1 or when D; is closer to 0, as could be foreseen.
Also, linking h, and hg leads to larger margins.
Remark that § = 1.00 e.g. when ho = ibg =0,
and Dy = 0 e.g. when 0v/0t = 0.

!Scilab is a free software developed by INRIA, which
is distributed with all its source code. For the distribu-
tion and details, see Scilab’s homepage on the web at the
address http://wuw-rocq.inria.fr/scilab/



Di\é || 1.00 | 0.95 | 0.90 |

0 (Th. 4) [ 225 | 158 | 96.0
1(Th. 4) |[ 103 [ 37.1 | 184
Foo (Th. 1) || 39.9 | 29.1 | 184

Table 1: Maximal value of K permitted for prov-

ing absolute stability of (18) — General case.
Di\é || 1.00 | 0.95 | 0.90 |

0 (Th.5) || 713 | 602 | 488

1 (Th. 5) || 695 | 584 | 468

oo (Th. 2) || 305 | 280 | 254

Table 2: Maximal value of K permitted for prov-

ing absolute stability of (18) — Case hy = hg.
D1\é || 1.00 | 0.95 | 0.90 |

0 (Th. 6) || 276 | 202 | 128

1 (Th. 6) | 106 | 38.9 | 19.5

Yoo (Th. 3) | 39.9 | 29.8 | 19.5

Table 3: Maximal value of K permitted for prov-
ing absolute stability of (18) — Case hy = 2hg.
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20TyD,KC CTnDyK 0, 2CTnD\KCp

) . DyKC mDsK 0 Dy KC
def diag{R,02,+p} + diag 2 s pxn n2R s y 02n4p
On On Xp On O”
2CfnD\KC CinD:K 0, 205nD1KCg
( AT Pg + J;ﬁA CTK(¢— P3B PgA, On
_ (KC - BTP; -2 Opxn (KCjy
d o b 0 b
+ diag § Qap + Qs Onp AT P, Onxy (1 - 26)Qup 0,
| 0n CIK¢ 0p (1-26)Qpp
([ 0, ATCT Ky 0y, 0, Onxp 0, )
nKCA —-2nKCB nKCA, nKCgA —-nKCgB nKCgA,
_ 0y, ATCT Ky 0, 0y, Onxp 0,
tdiagy |, ATCTEn 0, On Onp 0, |0 (19
Opxn _BTC;Z;KW Opxn Opxn Op Opxn
0,  ALCFKn On On, Onxp On )
det ATPg + PgA CTK(— P3B PsA,
< diag{R1,0n4,} + diag< Qp,0,, [ CKC — BTPg —2¢ (KCp
Al Py CjK¢ (1-26)Qs
0, ATCT Ky 0, O xp 0,
nKCA —2nKCB nK(CAqy + CgA) —nKCgB 1nKCgA,
+| 0 (ALCT + ATCE)Kn 0, Onxp 0,
Opxn _BT%KU Opxn Op Opxn
0y, ALCEKn Op Onxp 0y,
2CTnD\KC CTnDyK 20"nD1KCjp
+ diag nDyKC 2nD3 K nDyKCg Ontp o - (16)
2C5nD1KC  CinD:K 2057D1KCp
2CTnDiKC CTnDyK 0, 20T9D1KCs
Dy K 2nDs K DyK
©l Giag{Ro, Opip} + ding{ | 1P2EC TDE Qo mDaKCs
On Onxp On On
2CfnD1KC CinDyK 0, 2CFnD1KCp
—6Qpp 0p CEK¢ 0n
: 0, A"P3+PsA CTK(-P3sB PgA,
+ dla‘g Qaﬂ + Qﬂﬁ’ 0p> CKCﬁ CKO _ BTPﬁ _2C Oan
0 Agpﬂ Onxp 1_2—36Qaﬁ
0n ATCT Ky 0, 0n Onxp 0n
nKCA —29)KCB nKCA, nKCgA -nKCzB nKCszA,
0p, ATCT Ky 0, Op, Onxp 0,
| o ATCT K 0 0 0 0 : (17)
n B n n n nxp n
Opxn _BT(;gKn Opxn Opxn Op Opxn

0p, ATCT K On, 0y, Onxp 0y,



