Automatic Generation of Collison-Free Programs
for Multiple Manipulators Using Evolutive Algorithms

MIGUEL A. RIDAO™, J. RIQUELME?Z, E.F. CAMACHO! AND M. TORC?

'Dpto. Ingenieria de Sistemas y Automética

’Dpto. Lenguajes y sistemas Informéaticos

Universidad de Sevilla
Escuela lngenieros. Camino de los Descubrimientos §n 41092 - SEVILLA
SPAIN

Abstract: A method based on Evolutionary Algorithms for obtaining coordinated motion plans of multiple
manipulator robots using a Decoupled Planning approach is presented. The problem has been decomposed in two
subproblems: path planning of each robot independently of the other robots and trgjectory planning, where the
paths are synchronized. This paper is focused on the second problem. An evolutionary agorithm is proposed to
generate free collision robot programs that minimize the total motion time of the robots along their paths
Key-words:- Evolutive algorithms, multirobot systems, motion planning

CSCC'99 Proceedings. - Pages 1881-1887

1 Introduction
Motion planning is an important problem in multi-

robots systems. The plan has to take into account, not only
the workspace obstacle, but the other robots. So, the
motion planner has to consider the possibility of a collision
among them and has to plan the movement of each robot
in such away that all collisions are avoided.

Severa approaches have been proposed to solve this
problem [1], but the most popular approach is the
Decoupled Planning method [2]. This method divided the
motion planning problem into two subproblems:

a Freecallison path for every robot just considering
fixed obgtacles: A classic path-planning problem is
solved considering only one robot at atime, and fixed
obstacles (other robots are not considered as obstacles
at this stage). [1]. The work of this paper is not centre
in this subproblem, so we suppose that a path for every
robot has been previoudy obtained.

b) Interactions among robot paths. The second
subproblem determines the way the robots have to
executed the movement along their paths without
collisions among them
This decomposition reduces the complexity of the

problem but this gain results in a loss of completeness.

Severa techniques have been proposed to solved this
second problem for manipulator systems [3],[4]. The type
of solutions given by the agorithm is an important
practical issue. Most of the above agorithms provide robot
trgjectories (a time component associated with each point
of the path). Such trgectories are very difficult to
implement in most industrid robots, driven by robots
program.

In this paper a method for automatic generation of
robot programs is presented. The method can be applied to
more than two robots. The obtained programs will execute
the coordinated motion of several manipulators without
collisons. The programs can be easily written in most
industrial robots programming language. They will include
the movement code and the synchronization code and the
coordination will be desgned in such a way that
minimizes the total motion time of the robots.

The optimization problem will be solved using Evolutive
Algorithms [5]. Evolutive are search procedures based on
natural selection mechanism and genetic concepts.

2 A decoupled planning method
Let's consder a robotic system composed by R robots
sharing a common workspace with known fixed obstacles.

Thiswork was supported in part by the Spanish research agency CYCIT under grant TAP 96-0884 and TAP 98-0541

1001

A robot j will have N; degree of freedom. The problem is
to plan the movement for every robot from an initial
configuration to a final configuration avoiding collisons
with fixed obstacles and themselves. Initidl and fina
configuration are previously known.

Let's consder that a fixed obstacle collision-free for
each of the robot has been previoudy obtained. These
paths are assumed to be given as parameterised curves in
the joint space.

P =FI() O£l £1],
and 1£ JER
The Coordination Space is an R-dimensiona verifying:

with FI:R® RV

cs={(%..1%) /01T 1], with 1£jER}

A point in CS represents a robotic system
configuration, determining the position of the articulations
of each robot.

The Collison Region (CR) is the set of points of the
CS where a least, two robots are colliding. A two robot
system with their prescribed paths is represented in Figure
l-a Its Coordination Space with the Collison region
appearsin Fig. 1-b.

(I ll‘ﬂax’ max)
Callison
Region

ROBOT1 0o 0 RopoT2

| 1

|2
max

max

) © b

Figure O6U&IAl ¢Aiu6oc danUidonid 46644P0. &) Two manipulator
system with their prescribed paths. b) Coordination Space and Collision
region

A FreeCdllison Coordinated Path (CP) is a
continuous path in the Coordinated Space from point
0,..0 to (I v+ ﬁax) where no collison among robotsis
produced .

The proposed method are based on a search in the
Coordination Space. So, in order to reduce the complexity
of the problem, each robot path is discretised into several
equa intervals. The intervas of the path of robot j will be
numbered from 1 to max, and d/will note the interval
number k of the path of robot j. A discretised path of robot
j isdescribed as:

={d) 11£ j £ max,}

A Cdl Cisdefined asthe following CS subspace:
C=d; d2 . d} / d}Tw,
2 R J
A cdl iscollison-freeif verifies:
"1iTd) with 1£j£R b {14 17)i CR
In order to simplify the notation, an interval of a path

will be noted by its ordering number, that is
W, ={k/1£k £ max;} . Now, acel isdefined as a Rtuple

C=(ny,...,ng) and the Coordination Space is transformed
into an array of cells named Coordination Diagram (CD).
Extending the previous concept, a Coordination Path in
CD is defined as non-decreasing secuence of consecutive
free cdls from the initia cdl (1,...,1) to the fina cell
(mexy,..,MaXg).

In order to obtain CD, the number of cells to be
evauated in a system with Rrobotsismax; ~ ... "~ maxg .
Nevertheless, it is not necessary to evaluate every cell. The
whole DC can be obtained in a smpler way by computing
severa two-dimensiona coordination diagrams. Let's
consider athree-robot system. If robots 1 and 2 collidein a
point of their respective paths, this collison condition
persists independently of position of robot 3. So, the set of
two-dimensional CD computed with every pair or robots
(i,)) with 1£i JER, will provide information to evaluate the
collision state of every R-dimensiona cell.

A free collison coordination path will be composed of
a sequence of free cdlls. In order to implement a trgjectory
in the coordination diagram, the motion of the robots must
be synchronized, that is, the robots have to be
smultaneously on points of the path corresponding to free
cell coordinates. Robots can be synchronized by a closed
loop strategy based on synchronization points [6],[7]. A
synchronization point is a point in the coordination
diagram which the robots have to reach, that is, any
coordination path will necessarily pass through it. So,
when a robot reaches a synchronization point, it waits for
the others to reach the synchronization point before
prosecuting its planned motion.

A collision-free coordinated motion of multiple robots
can be found by searching for a synchronization point
sequence that minimizes the total coordinated motion time.
The object of this paper is to determine this
synchronization point sequence.

Let's consider an hypercube formed by free cellsin the
coordination diagram and let's consider the motion of the
robots from the lower left corner cell to the upper right

1009

corner cell. Any trgjectory defined for each robot between
these two points in the coordination diagram will generate
a collision-free coordination path. This class of hypercubes
is going to be caled Free Hypercubes.

Let's now consider a set of free hypercubes, connected
in such a way that the upper right corner of one hypercube
isthe lower left corner of the next, as can be seen in Figure
2. Furthermore, the lower left corner of the first one is the
lower left corner of the whole coordination diagram, and
the upper right corner of the last hypercube is the upper
right corner of the coordination diagram. This set of
hypercubes is a Free Hypercube Sequence, and the
intersection points between two hypercubes will be the
synchronization points.

Given a free hypercube sequence, any coordination
path constrained to pass over every synchronization point
of the sequence will be a collison-free coordination path.
This congraint is very easy to implement using most robot
programming language. The set of synchronization points
will divide the path of each robot into several sections.
Any section of the path between two synchronization
points will be followed by every robot independently of
the others, but a synchronization operation must be
implemented a the end of the section, that is, a a
synchronization point. The required communication
among robots is easy to implement connecting digital
input and output among the controllers of the robots.

The problem now isto find a free hypercube sequence,
that is, a synchronization point sequence that minimizes
the total execution time necessary for the robots to
complete their whole paths. The main variables used to
find this sequence are the number of synchronization
points, which depend on the collision region shape, and the
position of these points.

This optimization problem can be solved by an A’
agorithm [6], although the great number of successors of
each cell makes the searching tree too big .

3 Theproposed evolutive algorithm

This section describes the proposed algorithm to find an
optima hypercube sequence. First, formal description of
chromosome structure and operations over this
representation is indicated. Theresfter, the main aspects of
the evolutive algorithm are described.

3.1 General definitions.
3.1.1 Data structures.

Point: A point P in a R-dimensiona space is defined as a
tupla (Py,Pa,....pr) With pil N. A point defines a cdll in the
coordination diagram.
Order relationships:
1. Less or equa operator: P £ Q, where P and Q are
points, if " i p£g;.
2. Lessoperator: P<Q if $j/p<qg and " i'j p£q.
Sequence: A sequence is defined as a tupla of points S
=<S,S,...5>. An hypercube sequence will be defined
with this type of data.
Sequence length: The length of a sequence L (noted as
#L) is defined as its number of points.
Ordered sequence S=<S,S.....S5>
sequenceif SES. " i.
Multiple Point: Let's consder an ordered sequence S
where $i,j>0 / §.1<§=S.1=...=S4<S4+1. The subsequence
of points <§,S.1,...,9+> is defined as a Multiple Point.
Reduced ordered sequence: S is defined as a reduced
ordered sequence if it is an ordered sequence and verifies
S$=<S,,S,,...,.5> with S<S;; "i. That is, an ordered
sequence without Multiple Points.
Presequence: Given S presequence(Sm) with mE#S is
defined as <S,,S,,....S>. If m>#S, presequence(Sm)= S
Postsequence: Given S postsequence(Sm) with me#S is
defined as <SS S If m>#S,

postsequence(Sm)=/E

is an ordered

3.1.2 Operations.

Concatenation: The concatenation (+ operator) of two
sequences S and T is defined as the sequence
<S_|_,...,S¢5,T1,...,T#T> .

Movement: Given an ordered sequence S anaturd mwith
MEAS and a point Q, movement(Sm,Q) is defined as the
sequence <S,S,...,.SitQ.,....Ss> where S+Q represents a
sum in the vectoria space of points.

Elimination: Given a sequence S and a naturad m with
OEMEHS, dimination(Sm) operator gives the sequence
<SS Sn1, St S,

Insert: Given a ordered sequence S a natura m with
OEMEHS and a point Q, insert(Sm,Q) is defined as the

mumce <S_|.1&1---1ST11Q1ST‘H—11---18¢S>-
Order: An aditiona operator to transform a not-ordered to

ordered sequence has been defined. Let be S a sequence
where a point S, do not verify S,.£S, £ Sna. We define
order(S=S, where S=S except for S\, defined as:

(S, "1 (8.),>(S),
(S),=1(S), "1 1 (8,),£(8),£(S..)

1), "0 1 (8w, >(8),

1009

3.2 Evolutionary algorithm

Many variants of EA have been defined in literature.
Different implementations have been tested by the authors
for the problem presented in this paper. Finally, the option
described in next sections has obtained best results. The
main aspects defining an EA are: chromosomic structure
of the individuals, generation of initia population, fithess
measure to evaluate individuals, genetic operators to
modify them and parameters to control the process.

3.2.1 Chromosomic representation of individuals.

An individua of the population represents an hypercube
sequence in the coordination diagram. An hypercube
sequence with n synchronization points is going to be
represented by an ordered sequence S of length n with
S=(1,1,.R.,1) and S;= (max;,max,,...,maxg). Notice that n
is variable, that is a variable-length codification will be
used. An individual is admissible if it forms an increasing
Sequence of Free Hypercubes, otherwise it is a non-
admissible individud. Figure 2 shows the chromosomic
representation of an hypercube sequence in a two-
dimensiona example.

. s
Se3

S» S

Sill S1 Sa1

) (o] o[Su[Se Sl S S o]

W,

Figure OsU&ial ¢ainooe danUi&omid aseaabo.
representation of an hypercube sequence

Chromosomic

3.2.2 Generation of theinitial population.

The initial population is randomly selected. Taking into
account that the length of a sequence is variable, to obtain
ainitia population with a wide diversity of solutions, the
following procedure is proposed:

A maximum number of points NMAX is established
(only for the initial population), and the length of the
sequences of the initid population is distributed with a
random increasing probability between 1 and NMAX.
Once the length of a sequence is selected, its conditutive
points are obtained as follows:

R sats of n random valuesin [0,1] are generated,

then they are sorted in a increasng way and

projected on [0,maxq],...,[0,maxg] intervals.

3.2.3 Fitness measure.

The evauation of the fitness measure will consider two
different kind of individuas. If the hypercube sequence is
a free collison one, a vaid individuas is obtained,
otherwise the individua is non-valid. In fact, two different
fitness functions will be used. For vaid individuds, the
fitness function gives the total execution time needed by
the robots to complete their paths, when the
sinchronization points are placed in the positions defined
by the individud specifications (See [Ridao, 1995] for a
more detailed description).

The fitness function for non-vdid individuas is
completely different. The execution time cannot be used as
a fitness measure, because this type of individua is not a
solution of the problem. The function must measure how
far it is from a valid individua. Obvioudy, the fitness
value for this kind of individual must be higher than any
vaid individuad vaue. The function consdered is
f(N)=K+nco, where K is a high vaue in respect to the
value associated to the valid individuas, and nco is the
number of obstacle cells inside the hypercube sequence.

3.2.4 Genetic operators

Four types of operators have been defined for the
evolutionary process. a recombination operator or
crossover, two types of mutation operators. loca mutation
(produce a dight modification of an individud), structural
mutation (modify the individual structure) and findly, the
reduction operator to diminate multiple points of an
individua. The following subsections formally describes
these operators.

Crossover operator.
Giventwo individuals Sand T :

crossover(ST) = presequence(Sm) +
postsequence(T,l)

with mand | randomly selected. Also, in order to obtain an
admissibleindividual S, £ T, (Figure 3).

e S parent

—— Chil
- T parent Chid

w
1

FigureOsU&ial ¢aitooc danlidomnio 488480, . Croosover operator

1001

L ocal Mutation operator.

This mutation operator produces a dight change in an
individual. The operation consst of applying to an
individual S the operation movement(Sm,Q) where $ j /
gi* 0. That is, the movement is accomplished to only one of
the coordinates of point S, (Figure 4).

....... Before mutation

Wi

FigureOsU&ial ¢aituooc danlidonio 488480, Loca mutation

Structural mutation operators.

Structural mutations change the structure of individuals,
that is, they change their number of points. Given an
individud S and a position m, this operator gives a new
individua S obtained with the following operations
succession:

S=movement(Sm,Q)
S'=movement(S,m+1,Q")
S=insert(S',mQ)

where Q, Q' and Q" are points randomly elected with the
resriction S'£QES'1 (Figure 5). Others mutations
operator can be formed by the application of the insert or
elimination operatorsto an individual.

------ B — After mutation
WZ
Sml -------------- S fmz
Q o
s -
S'n

LA
FigureOsU&ial ¢aitooc danlidonid a8saabo. Structural mutation
Reduction operator.

The reduction operator acts on a ordered sequence,
eliminating multiple points. That is, given a ordered

sequence Sand for every multiple point <§,S.y,...,.S+> the
reduction operator transforms S into
S-\’:<S_|.1---1S1S+j+11---151>-

Control Parameters.

An dlitist evolutionary algorithm has been used, where the
best individual of each generation is replicated in the
following one. A percentage of the offspring is obtained
through parents mutations selected with a probability
proportiona to its fitness. The rest of the offspring is
obtained through parents crossover , and then, one of
above defined mutation operators is applied with a random
probability.

3.3 Complete algorithm.
This section presents the complete proposed evolutionary
agorithm:

PROCEDURE OPTIMIZATION
I nicializate(population)
FOR i=1 TO NumberOf Generation
Evd uate(popul ation)
popul ation=evol ution(popul ation)
ENDFOR
Solution=Best(popul ation)

PROCEDURE EVOLUTION(P)
Child={}
Add Best(P) to Child
FOR i=2 TO NumberOfReplica
Add Select(P) to Child
ENDFOR
FOR i = NumberOfReplica TO SizeOf Population
Add Crossover(Sdlect(P),Sdlect(P)) to Child
FOR each Cin Child
IF IsThereMutation
Substitute C in Child by
GenerateNeighbour(C)
IF IsThereReduction
Subgtitute C in Child by Reduction(C)
ENDFOR
RETURN(Child)

PROCEDURE GenerateNeighbour(Solution)
Generate(ProbChange)
IF ProbChange < ProbChangeloca
THEN RETURN L ocal M utation(Sol ution)
EL SE RETURN Structural M utati on(Sol ution)

5. Application Examples

100C

The proposed agorithm has been implemented and
applied to severd examplesin order to study its efficiency.
The first example corresponds to the motion of two
SCORBOT and sixteen collison regions and 180" 180
cells (Figure 6).

Tests have been redised with a 100 individuas
population. Other parameters are NumberOfReplica=10%,
NMAX=10, mutation probabilities are 30% and reduction
probahility is 80%.

Resaults of the motion time for example 1 can be seen
in Table 2. These values have been obtained for 100, 200,
300 and 500 generations of 100 individuals.

FigureOsU&ial ¢aitooc danlidonio 48saabo. . Coordination
Diagram of example 3

Table 1.- Example 1 results (in seconds)

odlgia A& | Avg. Std.D Min.
V=8 PG00

OAEEEARBOCD.

M ethod

GA 100 44.98 1.34 4235
GA 200 4295 1.71 39.78
GA 300 41.19 1.16 38.63
GA 500 40.82 1.03 39.26

Finally, an application with three robots is presented.
Initid and fina configurations can be seen in Figure 7-1
and 7.5 respectively. The corresponding two-dimentional
coordination diagrams are presented in Figure 8, and
results are in Table 2 (same parameters as previous
example). More then 200 individua do not significantly
improve results. Both problems cannot be solved with an
A" dgorithm.

Figure 7 Initid (1), final (5) and intermediate position in example 4

6 Conclusions

This paper describes a method to generate collision-free
coordinated motion plans in multirobots systems. The
method tries to find a synchronization point sequence that
minimizes the total execution motion time using an EA.
The plans can be easily written in most industrial robot
programming languages.

Table 2.- Example 2 results (in seconds)

odlgia A& | Avg. Std.D Min.
N I 1200

OAEEEARBOCD.

M ethod

GA 100 8.95 112 8.37
GA 200 8.66 1.06 8.26

Figure 8 Two-dimentional coordination diagramsin example 4

7 References

[1] JC. Laombe, Robot Motion Planning,
Academic Publishers, 1991.

[2] K.Kantand SW. Zucker, Toward Efficient Trajectory
Planning: The Path-Velocity Decomposition. Int. J.
Robot. Research, 5 (3), pp 72-89. 1986.

Klewer

1002

(3]

[4]

(3]

P.A. O'Donnell and T. Lozano-Pérez, Deadlock-Free
and Collison-Free Coordination of Two Robots
Manipulators, Proc. of the IEEE Int. Conf. Robotics
and Automation, pp 484-489, 1989.

J. Lee, A dynamic programming approach to near
minimun-time trajectory planning for two robots.
IEEE Trans.Rob.and.Autom.. Vol. 11 n° 1, pp 160
164. Febr 1995.

D.E. Goldberg, The design of innovation: Lessons
from genetic algorithms, lesson for the real world.
Internal Report n° 98004, Illinois

[6] M.A. Ridao, Generacion Automética de Trayectorias

Libres de Colisones para Mdltiples Robots
Manipuladores. Ph. D. Thess. Universdad de
Sevilla 1995

[71 M.A. Ridao, J. Riquelme, E.F. Camacho and M.Toro.

An Evolutionary and Local Search Algorithm for
Planning Two Manipulators Motion. Lecture Notesin
Artificia Intelligence 1416. Springer. 1998.

10077

