
1881

Automatic Generation of Collision-Free Programs
for Multiple Manipulators Using Evolutive Algorithms

MIGUEL A. RIDAO 1, J. RIQUELME2, E.F. CAMACHO1 AND M.TORO2

1Dpto. Ingeniería de Sistemas y Automática 2Dpto. Lenguajes y sistemas Informáticos
Universidad de Sevilla

Escuela Ingenieros. Camino de los Descubrimientos s/n 41092 - SEVILLA
SPAIN

Abstract: A method based on Evolutionary Algorithms for obtaining coordinated motion plans of multiple
manipulator robots using a Decoupled Planning approach is presented. The problem has been decomposed in two
subproblems: path planning of each robot independently of the other robots and trajectory planning, where the
paths are synchronized. This paper is focused on the second problem. An evolutionary algorithm is proposed to
generate free collision robot programs that minimize the total motion time of the robots along their paths
Key-words:- Evolutive algorithms, multirobot systems, motion planning
CSCC'99 Proceedings: - Pages 1881-1887

This work was supported in part by the Spanish research agency CYCIT under grant TAP 96-0884 and TAP 98-0541

1 Introduction
Motion planning is an important problem in multi-

robots systems. The plan has to take into account, not only
the workspace obstacle, but the other robots. So, the
motion planner has to consider the possibility of a collision
among them and has to plan the movement of each robot
in such a way that all collisions are avoided.

Several approaches have been proposed to solve this
problem [1], but the most popular approach is the
Decoupled Planning method [2]. This method divided the
motion planning problem into two subproblems:
a) Free-collision path for every robot just considering

fixed obstacles: A classic path-planning problem is
solved considering only one robot at a time, and fixed
obstacles (other robots are not considered as obstacles
at this stage). [1]. The work of this paper is not centre
in this subproblem, so we suppose that a path for every
robot has been previously obtained.

b) Interactions among robot paths: The second
subproblem determines the way the robots have to
executed the movement along their paths without
collisions among them
This decomposition reduces the complexity of the

problem but this gain results in a loss of completeness.

Several techniques have been proposed to solved this
second problem for manipulator systems [3],[4]. The type
of solutions given by the algorithm is an important
practical issue. Most of the above algorithms provide robot
trajectories (a time component associated with each point
of the path). Such trajectories are very difficult to
implement in most industrial robots, driven by robots
program.

In this paper a method for automatic generation of
robot programs is presented. The method can be applied to
more than two robots. The obtained programs will execute
the coordinated motion of several manipulators without
collisions. The programs can be easily written in most
industrial robots programming language. They will include
the movement code and the synchronization code and the
coordination will be designed in such a way that
minimizes the total motion time of the robots.
The optimization problem will be solved using Evolutive
Algorithms [5]. Evolutive are search procedures based on
natural selection mechanism and genetic concepts.

2 A decoupled planning method
Let's consider a robotic system composed by R robots
sharing a common workspace with known fixed obstacles.

1882

A robot j will have Nj degree of freedom. The problem is
to plan the movement for every robot from an initial
configuration to a final configuration avoiding collisions
with fixed obstacles and themselves. Initial and final
configuration are previously known.

Let's consider that a fixed obstacle collision-free for
each of the robot has been previously obtained. These
paths are assumed to be given as parameterised curves in
the joint space.

Rj

P jNjjjj

≤≤

→Φ≤≤Φ=
1and

:with0)(max RRλλλ

The Coordination Space is an R-dimensional verifying:

(){ }RjCS jjR ≤≤≤≤= 1 1with0/,..., maxλλλλ

A point in CS represents a robotic system
configuration, determining the position of the articulations
of each robot.

The Collision Region (CR) is the set of points of the
CS where at least, two robots are colliding. A two robot
system with their prescribed paths is represented in Figure
1-a. Its Coordination Space with the Collision region
appears in Fig. 1-b.

ROBOT 1 ROBOT 2 0 0

 (0,0)

),(2
max

1
max λλ

a) b)

2
max

1
max λλ

Collision
Region

Figure ÓöÜëìá! ¢ãíùóôç ðáñÜìåôñïò áëëáãÞò. a) Two manipulator
system with their prescribed paths. b) Coordination Space and Collision
region

 A Free-Collision Coordinated Path (CP) is a
continuous path in the Coordinated Space from point
(0,...0) to ()R

max
1
max ,...λλ where no collision among robots is

produced .
The proposed method are based on a search in the

Coordination Space. So, in order to reduce the complexity
of the problem, each robot path is discretised into several
equal intervals. The intervals of the path of robot j will be
numbered from 1 to maxj, and j

kδ will note the interval

number k of the path of robot j. A discretised path of robot
j is described as:

{ }j
j

kj maxj ≤≤=Ω 1/δ

A Cell C is defined as the following CS subspace:

j
j

n
R
nnn jR

C Ω∈×××= δδδδ /...21

21

A cell is collision-free if verifies:

() CRRj Rj
n

j

j
∉⇒≤≤∈∀ λλδλ ,,1with 1 K

In order to simplify the notation, an interval of a path
will be noted by its ordering number, that is

}1/{ jj maxkk ≤≤=Ω . Now, a cell is defined as a R-tuple

C=(n1,...,nR) and the Coordination Space is transformed
into an array of cells named Coordination Diagram (CD).
Extending the previous concept, a Coordination Path in
CD is defined as non-decreasing secuence of consecutive
free cells from the initial cell (1,...,1) to the final cell
(max1,..,maxR).

In order to obtain CD, the number of cells to be
evaluated in a system with R robots is max1 × ... × maxR .
Nevertheless, it is not necessary to evaluate every cell. The
whole DC can be obtained in a simpler way by computing
several two-dimensional coordination diagrams. Let's
consider a three-robot system. If robots 1 and 2 collide in a
point of their respective paths, this collision condition
persists independently of position of robot 3. So, the set of
two-dimensional CD computed with every pair or robots
(i,j) with 1≤i,j≤R, will provide information to evaluate the
collision state of every R-dimensional cell.

A free collision coordination path will be composed of
a sequence of free cells. In order to implement a trajectory
in the coordination diagram, the motion of the robots must
be synchronized, that is, the robots have to be
simultaneously on points of the path corresponding to free
cell coordinates. Robots can be synchronized by a closed
loop strategy based on synchronization points [6],[7]. A
synchronization point is a point in the coordination
diagram which the robots have to reach, that is, any
coordination path will necessarily pass through it. So,
when a robot reaches a synchronization point, it waits for
the others to reach the synchronization point before
prosecuting its planned motion.

A collision-free coordinated motion of multiple robots
can be found by searching for a synchronization point
sequence that minimizes the total coordinated motion time.
The object of this paper is to determine this
synchronization point sequence.

Let's consider an hypercube formed by free cells in the
coordination diagram and let's consider the motion of the
robots from the lower left corner cell to the upper right

1883

corner cell. Any trajectory defined for each robot between
these two points in the coordination diagram will generate
a collision-free coordination path. This class of hypercubes
is going to be called Free Hypercubes.

Let's now consider a set of free hypercubes, connected
in such a way that the upper right corner of one hypercube
is the lower left corner of the next, as can be seen in Figure
2. Furthermore, the lower left corner of the first one is the
lower left corner of the whole coordination diagram, and
the upper right corner of the last hypercube is the upper
right corner of the coordination diagram. This set of
hypercubes is a Free Hypercube Sequence, and the
intersection points between two hypercubes will be the
synchronization points.

Given a free hypercube sequence, any coordination
path constrained to pass over every synchronization point
of the sequence will be a collision-free coordination path.
This constraint is very easy to implement using most robot
programming language. The set of synchronization points
will divide the path of each robot into several sections.
Any section of the path between two synchronization
points will be followed by every robot independently of
the others, but a synchronization operation must be
implemented at the end of the section, that is, at a
synchronization point. The required communication
among robots is easy to implement connecting digital
input and output among the controllers of the robots.

The problem now is to find a free hypercube sequence,
that is, a synchronization point sequence that minimizes
the total execution time necessary for the robots to
complete their whole paths. The main variables used to
find this sequence are the number of synchronization
points, which depend on the collision region shape, and the
position of these points.

This optimization problem can be solved by an A*

algorithm [6], although the great number of successors of
each cell makes the searching tree too big .

3 The proposed evolutive algorithm
This section describes the proposed algorithm to find an
optimal hypercube sequence. First, formal description of
chromosome structure and operations over this
representation is indicated. Thereafter, the main aspects of
the evolutive algorithm are described.

3.1 General definitions.
3.1.1 Data structures.

Point: A point P in a R-dimensional space is defined as a
tupla (p1,p2,...,pR) with pi∈N. A point defines a cell in the
coordination diagram.
Order relationships:
1. Less or equal operator: P ≤ Q, where P and Q are

points, if ∀i pi≤qi.
2. Less operator: P<Q if ∃j / pj<qj and ∀ i≠j pi≤qi.
Sequence: A sequence is defined as a tupla of points S
=<S1,S2,...,Sn>. An hypercube sequence will be defined
with this type of data.
Sequence length: The length of a sequence L (noted as
#L) is defined as its number of points.
Ordered sequence: S=<S1,S2,...,Sn> is an ordered
sequence if Si≤Si+1 ∀i.
Multiple Point: Let's consider an ordered sequence S
where ∃i,j>0 / Si-1<Si=Si+1=...=Si+j<Si+j+1. The subsequence
of points <Si,Si+1,...,Si+j> is defined as a Multiple Point.
Reduced ordered sequence: S is defined as a reduced
ordered sequence if it is an ordered sequence and verifies
S=<S1,S2,...,Sn> with Si<Si+1 ∀i. That is, an ordered
sequence without Multiple Points.
Presequence: Given S, presequence(S,m) with m≤#S is
defined as <S1,S2,...,Sm>. If m>#S , presequence(S,m)= S.
Postsequence: Given S, postsequence(S,m) with m≤#S is
defined as <Sm,Sm+1,...,Sn>. If m>#S,
postsequence(S,m)=∅.

3.1.2 Operations.
Concatenation: The concatenation (+ operator) of two
sequences S and T is defined as the sequence
<S1,...,S#S,T1,...,T#T> .
Movement: Given an ordered sequence S, a natural m with
m≤#S, and a point Q, movement(S,m,Q) is defined as the
sequence <S1,S2,...,Sm+Q,...,S#S> where Sm+Q represents a
sum in the vectorial space of points.
Elimination: Given a sequence S and a natural m with
0≤m≤#S, elimination(S,m) operator gives the sequence
<S1,S2,...,Sm-1,Sm+1,...,S#S>.
Insert: Given a ordered sequence S, a natural m with
0≤m≤#S and a point Q, insert(S,m,Q) is defined as the
sequence <S1,S2,...,Sm,Q,Sm+1,...,S#S>.
Order: An aditional operator to transform a not-ordered to
ordered sequence has been defined. Let be S a sequence
where a point Sm do not verify Sm-1≤Sm ≤ Sm+1. We define
order(S)=S', where S'=S except for S'm defined as:

()

() / () ()

() / () () ()

() / () ()

'S

S j S S

S j S S S

S j S S
m j

m j m j m j

m j m j m j m j

m j m j m j

=
∀ >

∀ ≤ ≤
∀ >









− −

− +

+ +

1 1

1 1

1 1

1884

3.2 Evolutionary algorithm
Many variants of EA have been defined in literature.
Different implementations have been tested by the authors
for the problem presented in this paper. Finally, the option
described in next sections has obtained best results. The
main aspects defining an EA are: chromosomic structure
of the individuals, generation of initial population, fitness
measure to evaluate individuals, genetic operators to
modify them and parameters to control the process.

3.2.1 Chromosomic representation of individuals.
An individual of the population represents an hypercube
sequence in the coordination diagram. An hypercube
sequence with n synchronization points is going to be
represented by an ordered sequence S of length n with
S1=(1,1,..R..,1) and Sn= (max1,max2,...,maxR). Notice that n
is variable, that is a variable-length codification will be
used. An individual is admissible if it forms an increasing
Sequence of Free Hypercubes, otherwise it is a non-
admissible individual. Figure 2 shows the chromosomic
representation of an hypercube sequence in a two-
dimensional example.

Ω 1

S1

S2

S3

 s11

 s12

 s21

 s22

 s31

 s33

Ω 2

0 0 S11 S12 S21 S21 S31 S31 max1 max2

Figure ÓöÜëìá! ¢ãíùóôç ðáñÜìåôñïò áëëáãÞò. Chromosomic
representation of an hypercube sequence

3.2.2 Generation of the initial population.
The initial population is randomly selected. Taking into
account that the length of a sequence is variable, to obtain
a initial population with a wide diversity of solutions, the
following procedure is proposed:

A maximum number of points NMAX is established
(only for the initial population), and the length of the
sequences of the initial population is distributed with a
random increasing probability between 1 and NMAX.
Once the length of a sequence is selected, its constitutive
points are obtained as follows:

R sets of n random values in [0,1] are generated,
then they are sorted in a increasing way and
projected on [0,max1],...,[0,maxR] intervals .

3.2.3 Fitness measure.

The evaluation of the fitness measure will consider two
different kind of individuals. If the hypercube sequence is
a free collision one, a valid individuals is obtained,
otherwise the individual is non-valid. In fact, two different
fitness functions will be used. For valid individuals, the
fitness function gives the total execution time needed by
the robots to complete their paths, when the
sinchronization points are placed in the positions defined
by the individual specifications (See [Ridao, 1995] for a
more detailed description).

The fitness function for non-valid individuals is
completely different. The execution time cannot be used as
a fitness measure, because this type of individual is not a
solution of the problem. The function must measure how
far it is from a valid individual. Obviously, the fitness
value for this kind of individual must be higher than any
valid individual value. The function considered is
f(N)=K+nco, where K is a high value in respect to the
value associated to the valid individuals, and nco is the
number of obstacle cells inside the hypercube sequence.

3.2.4 Genetic operators
Four types of operators have been defined for the
evolutionary process: a recombination operator or
crossover, two types of mutation operators: local mutation
(produce a slight modification of an individual), structural
mutation (modify the individual structure) and finally, the
reduction operator to eliminate multiple points of an
individual. The following subsections formally describes
these operators:

Crossover operator.
Given two individuals S and T :

crossover(S,T) = presequence(S,m) +
postsequence(T,l)

with m and l randomly selected. Also, in order to obtain an
admissible individual Sm ≤ Tl (Figure 3).

Child
T parent

S parent

Ω

Ω
2

1

S

T

Sm

Tl

Figure ÓöÜëìá! ¢ãíùóôç ðáñÜìåôñïò áëëáãÞò. . Croosover operator

1885

Local Mutation operator.
This mutation operator produces a slight change in an
individual. The operation consist of applying to an
individual S the operation movement(S,m,Q) where ∃* j /
qj≠0. That is, the movement is accomplished to only one of
the coordinates of point Sm (Figure 4).

2 Ω

Ω 1

Q Sm

Before mutation After mutation

Figure ÓöÜëìá! ¢ãíùóôç ðáñÜìåôñïò áëëáãÞò. Local mutation

Structural mutation operators.
Structural mutations change the structure of individuals,
that is, they change their number of points. Given an
individual S and a position m, this operator gives a new
individual Sf obtained with the following operations
succession:

S'=movement(S,m,Q')
S"=movement(S',m+1,Q")
Sf=insert(S",m,Q)

where Q, Q' and Q" are points randomly elected with the
restriction S"m≤Q≤S"m+1 (Figure 5). Others mutations
operator can be formed by the application of the insert or
elimination operators to an individual.

2
Ω

Ω 1

After mutationBefore mutation

Sm

Sm+1

Q'

Q''

S fm

S fm+1

S fm+2

Q

Figure ÓöÜëìá! ¢ãíùóôç ðáñÜìåôñïò áëëáãÞò. Structural mutation

Reduction operator.
The reduction operator acts on a ordered sequence,
eliminating multiple points. That is, given a ordered

sequence S and for every multiple point <Si,Si+1,...,Si+j> the
reduction operator transforms S into
SR=<S1,...,Si,Si+j+1,...,Sn>.

Control Parameters .
An elitist evolutionary algorithm has been used, where the
best individual of each generation is replicated in the
following one. A percentage of the offspring is obtained
through parents mutations selected with a probability
proportional to its fitness. The rest of the offspring is
obtained through parents crossover , and then, one of
above defined mutation operators is applied with a random
probability.

3.3 Complete algorithm.
This section presents the complete proposed evolutionary
algorithm:

 PROCEDURE OPTIMIZATION
 Inicializate(population)
 FOR i=1 TO NumberOfGeneration
 Evaluate(population)
 population=evolution(population)
 ENDFOR
 Solution=Best(population)

 PROCEDURE EVOLUTION(P)
 Child={}
 Add Best(P) to Child
 FOR i=2 TO NumberOfReplica
 Add Select(P) to Child
 ENDFOR
 FOR i = NumberOfReplica TO SizeOfPopulation
 Add Crossover(Select(P),Select(P)) to Child
 FOR each C in Child

IF IsThereMutation
 Substitute C in Child by
GenerateNeighbour(C)
 IF IsThereReduction
 Substitute C in Child by Reduction(C)
 ENDFOR
 RETURN(Child)

 PROCEDURE GenerateNeighbour(Solution)
 Generate(ProbChange)
 IF ProbChange < ProbChangeLocal
 THEN RETURN LocalMutation(Solution)
 ELSE RETURN StructuralMutation(Solution)

5. Application Examples

1886

The proposed algorithm has been implemented and
applied to several examples in order to study its efficiency.
The first example corresponds to the motion of two
SCORBOT and sixteen collision regions and 180×180
cells (Figure 6).

Tests have been realised with a 100 individuals
population. Other parameters are NumberOfReplica=10%,
NMAX=10, mutation probabilities are 30% and reduction
probability is 80%.

Results of the motion time for example 1 can be seen
in Table 2. These values have been obtained for 100, 200,
300 and 500 generations of 100 individuals.

1

Ω 2

Ω

Figure ÓöÜëìá! ¢ãíùóôç ðáñÜìåôñïò áëëáãÞò. . Coordination
Diagram of example 3

Table 1.- Example 1 results (in seconds)

ÓöÜëìá! Äåí
Ý÷åé ïñéóôåß
óåëéäïäåßêôçò.
Method

Avg. Std.D Min.

GA 100 44.98 1.34 42.35
GA 200 42.95 1.71 39.78
GA 300 41.19 1.16 38.63
GA 500 40.82 1.03 39.26

Finally, an application with three robots is presented.
Initial and final configurations can be seen in Figure 7-1
and 7.5 respectively. The corresponding two-dimentional
coordination diagrams are presented in Figure 8, and
results are in Table 2 (same parameters as previous
example). More then 200 individual do not significantly
improve results. Both problems cannot be solved with an
A* algorithm.

Figure 7 Initial (1), final (5) and intermediate position in example 4

6 Conclusions
This paper describes a method to generate collision-free
coordinated motion plans in multirobots systems. The
method tries to find a synchronization point sequence that
minimizes the total execution motion time using an EA.
The plans can be easily written in most industrial robot
programming languages.

Table 2.- Example 2 results (in seconds)

ÓöÜëìá! Äåí
Ý÷åé ïñéóôåß
óåëéäïäåßêôçò.
Method

Avg. Std.D Min.

GA 100 8.95 1.12 8.37
GA 200 8.66 1.06 8.26

Figure 8 Two-dimentional coordination diagrams in example 4

7 References
[1] J.C. Latombe, Robot Motion Planning, Klewer

Academic Publishers, 1991.
[2] K. Kant and S.W. Zucker, Toward Efficient Trajectory

Planning: The Path-Velocity Decomposition. Int. J.
Robot. Research, 5 (3), pp 72-89. 1986.

1887

[3] P.A. O´Donnell and T. Lozano-Pérez, Deadlock-Free
and Collision-Free Coordination of Two Robots
Manipulators, Proc. of the IEEE Int. Conf. Robotics
and Automation, pp 484-489, 1989.

 [4] J. Lee, A dynamic programming approach to near
minimun-time trajectory planning for two robots.
IEEE Trans.Rob.and.Autom.. Vol. 11 nº 1, pp 160-
164. Febr 1995.

[5] D.E. Goldberg, The design of innovation: Lessons
from genetic algorithms, lesson for the real world.
Internal Report nº 98004, Illinois

[6] M.A. Ridao, Generación Automática de Trayectorias
Libres de Colisiones para Múltiples Robots
Manipuladores. Ph. D. Thesis. Universidad de
Sevilla. 1995

[7] M.A. Ridao, J. Riquelme, E.F. Camacho and M.Toro.
An Evolutionary and Local Search Algorithm for
Planning Two Manipulators Motion. Lecture Notes in
Artificial Intelligence 1416. Springer. 1998.

