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BULGARIA

Abstract: - In this paper  we present an interval-valued formulation of Markovian models providing the basis of
the annealing method for discrete optimisation. We keep with the theoretical roots of the above method, yet by
using additional quantities, originated in statistical physics, such as the free energy. Convex analysis principles
are applied, thus giving rise to the establishment of statistical interval-valued models. Moreover, we use
relations defined on these models such as union and intersection to handle the uncertainty inherent in the
probabilistic description of the annealing process.

In particular, the conditionally independent term that appears as a function either of neighbourhoods or
energies of states in the classical versions of simulated annealing, is assigned a parameterised description. The
addition of the parameters converts the exact representation of the transition probability distribution, at a given
temperature, into a parameterised family of distributions. We then use a joint interval-valued probabilistic model
to represent the annealing process and make use of the Kullback information divergence along with Jensen’s
inequalities applied over random sequences to derive an upper bound on the upper expectation of free energy.
The use of free energy as an evaluation function is justified by fundamental thermodynamic relations. According
to these relations, the free energy represents the algebraic sum of the entropy and the product of energy and the
inverse temperature.

More specifically, the bound comprises two functions. The first function depends on the states and
temperature and coincides with the expectation of the logarithm of the partition function, since the second
function depends on the states and the additional parameters, including the temperature. Computationally, this
bound may be exploited, if we use an approximation algorithm such as a classical simulated annealing version
to calculate expectations by keeping constant values of the parameters. Thus, at a given iteration and by
assuming that the temperature  takes on an exact value, we may obtain the exact expectation of the logarithm of
the partition function. At the same time, given that all other parameters are also kept constant, we obtain an
exact value of the difference between the free energy and the logarithm of the partition function. The upper
expectation of this difference represents the second term of the bound on the upper expectation of the free
energy. Then we perform a minimisation of this bound over temperature. In other words, we obtain sections of
partial statistical interval-valued models taken over temperature. Finally, in order to obtain the upper
expectations we perform maximisation over the rest of the parameters except temperature. Note that the
maximisation step affects only free energy and neither the logarithm of the partition function, nor its expected
value.
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1   Introduction
Since the past decade simulated annealing has been
established as a viable technique to solving hard
optimisation problems [1-5]. Although the
applicability of this technique is inarguably wide,
several problems concerning issues such as its
convergence properties and reliability of estimated

probabilities still remain a subject of research. The
two aforementioned issues are strongly interrelated in
the sense that the convergence theoretical conditions
cannot often be met in practice. This results in the
necessity of introducing additional parameters, thus
aiming at reducing the uncertainty inherent in the
model of the annealing process. More  specifically, in
the literature of simulated annealing, the transition



between states is expressed by means of a function of
two terms, namely the temperature and a
conditionally independent term associated with either
the energies [5, 6] or the neighbourhood [4, 7] of
these states. Both terms, however, due to inefficiency
of data, induce uncertainty in the probabilistic
description of the annealing process. From an
algorithmic point of view, the whole process is
divided into temperature dependent partial Markov
chains by additionally applying a random process
called the Metropolis process [8]. Variations due to
the temperature are thus replaced by separate
examination of randomly generated Markov chains at
each temperature. The computational procedure is
completed by a cooling schedule [9-11]. A different
approach concerning the conditionally independent
term, is developed by multi-canonical annealing,
which applies approximations of energy histograms.
Another method completely excluding the Metropolis
process and using deterministic approximations to
describe the annealing process is the mean-field
annealing [12].
An alternative method to finding approximations to
distributions is to represent them  by convex sets of
distributions, or treat them as interval-valued or
bounded functions [13-15]. Such methods gave rise
to applications in fields such as parameters
estimation [16-19] and statistical inference [21-22].
In this paper, we aim at applying the formalism of
statistical interval-valued models [15] on the
underlying Markovian model of the annealing
process. Briefly stated, the computational procedure
consists of the following steps. First, we parameterise
the transition probability distribution so as to
encapsulate into the parameters the uncertainty
caused either by inefficiencies in the solutions
generation mechanism or the finite length of the
Markov chains. Then, we calculate exact stationary
probability distributions and subsequently
expectations dependent on individual parameters
values. A Monte-Carlo simulation may be used for
this purpose. This implies that exact models are not
abandoned in our formulations. On the contrary, we
use partial exact expectations of the partition
function. Yet, we take into account their variations
with respect to  the parameters. Second, we consider
sections of the upper expectation of an evaluation
function with the above exact expectations. We
obtain the tightest sections by performing
minimisation with respect to temperature. Finally, we
calculate the upper expectation of the evaluation

function by taking the union of the above sections
over the rest of the parameters.
The present paper is organised as follows. First, we
briefly present the exact formulation of annealing
method based mainly on [4,7]. At the same time, we
point out the inefficiencies of the exact versions of
the annealing method and attempt to establish the
points where the interval-based approach could be
applied. It follows a brief introduction to the interval-
valued statistical models. Note that we concentrate
solely on those concepts and formulations, which will
be used thereafter. Finally, by using fundamental
relationships from statistical physics we derive an
interval-valued  approach to the probabilistic model
of the annealing process and briefly suggest an
algorithmic implementation of this model.

2   Problem Formulation
Consider random mappings of the following form:
x w xj j i i= ( , , )β ξ (1),

where,
x x Xi j, ∈ ,

ξi is an independent variable,

X is the set of states, and
β is the thermodynamic analogue of the inverse

temperature.
Define an evaluation function e x( )  on X, considered

the analogue of energy in thermodynamics. Then the
transition from state xi to state x j for a given value of

parameter β  is [4,7]:
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where G ij , Aij are called the generation and

acceptance probabilities, respectively. The generation
probabilities are identified with the neighbourhood of
x xi j, , since the acceptance probabilities depend on

the energy difference between states x xi j,  multiplied

by the inverse temperature. For the sake of simplicity
we  re-write the above equation as follows:
P x x G A e x xj i ij ij j i( / , ) ( ( / ))β β=  (3)

To completely determine function P x xj i( / , )β  we

have to compute Gi j , which is equivalent toξi  from

Eq. 1 and may be viewed as a conditionally
independent term. To calculate the stationary
probability distribution of the Markov chain



generated by Eq. 3, we have to assume that matrix
G is irreducible [7]. In other words, we have to
assume that there is always communication between
every two states x xi j, . However, the generators that

are usually used to generate sequences of states or
neighbourhoods cannot fulfil this requirement.
Therefore, we may consider that all states are linked
to each other through parameters, thus forming a
parameterised conditional distribution which
hereafter we will denote with P x xj iθ β( / , ) .

3   Problem Solution
Before proceeding to the statistical interval-based
formulation of the above defined process we will give
some preliminary information and notations
concerning the statistical interval-based models.

3.1 Interval-valued expectations and
representation of interval-valued statistical
models
Consider a function f defined over a set of states X .

Then we define the interval-valued expectation

[ , ]E f E f
−

−
of a function f ,

where E f E f
P K
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−

∈
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= inf and K  is a

convex set of probability distributions.
Let us now assume that a function g - defined over

the same set of states- and its upper expectation Eg
are given. Then by applying the duality principle we

can obtain the upper expectation E f of any

function f given that:

f x c b g x( ) ( )≤ + + (4)

We find the upper expectation E f by solving the

following minimisation problem:

[ ]E f c b Eg= + +min (5)

In case that we have more than one functions g such

that g Gi ∈ , Eqs (4), (5) yield respectively:
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The formulae for the lower expectations are similar,
the only difference being that we perform
maximisation instead of minimisation and the
inequalities are taken in the opposite direction.

In many cases it is more convenient to represent
interval-valued statistical models defined on X  by a
set of parameters Θ . These parameters may be
introduced into the probability distribution, thus
forming a parameterised family of probability
distributions. The union of these distributions taken
over the values of the parameters yields:

E f E f E f E f= =
∈ ∈

max , min
θ

θ
θ

θΘ Θ
 (8)

On statistical interval-valued models we can apply
three operations, namely inclusion, union and
intersection. Unions and intersections will be used
extensively in the interval-valued representation of
the annealing process, so we will give a brief
description of these two operations.
Let us consider an arbitrary number of upper

expectations of a function f F∈  denoted by E fθ ,

where F  is a space generally dependent on the

parameterθ . Then we can obtain E f by the union or

intersection of the upper expectations E fθ  by using

the following formulae:

E f E f E f E f= =
∈ ∈

max , min
θ

θ
θ

θ
Θ Θ

 (9)

for all θ ∈Θ  and for every f F∈ θ
θ
I ,

f L F⊂ + ( )θ
θ
U . The symbol L+ denotes the semi-

linear combination of all Fθ .

Equations (9) are also valid if instead of
parametersθ  we take interval-valued expectations
dependent on functions g .

We now give the following theorem on the
representation of statistical interval-valued models
[15].
Theorem 1. Any interval-valued model E  may be
represented as the union of its E g∗ -intersections,

i.e.,
E E

Eg E g Eg
E g= ∨

≤ ≤∗
∗

            (10)

where, by E g∗ we denote exact expectations of the

function g . Accordingly, for θ ∈Θ the above

theorem yields:
E E= ∨

∗θ θ
            (11)

We use the following formula [14] to obtain E g∗ -

intersections of a model E :

[ ]E f E f cg cE gE g
c

−
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By substituting EE g∗
 in Eq. 10 with E fE g∗ from Eq.

12, we finally obtain the upper expectation of
function f :

[ ]E f E f cg cE g
Eg E g Eg c

= − +
≤ ≤

∗
∗

max min ( )            (13)

To link the above equation with Eq. 11, which will be
used later, we have to note that the maximisation
may be taken over the parameters θ . 

Since in the following we will use interval-valued
expectations of joint functions we present briefly the
corresponding definitions.
We denote the joint interval-valued expectation of a

function f x y( , ) with [ ( ( , )), ( ( , ))]E f x y E f x y
−

−
,

where:

E f x y E E f x y
xy x

x
y

( , ) ( , )= and

E f x y E E f x yxy x
x
y( , ) ( , )=            (14)

3.2 Formulation of the annealing process in
the context of statistical interval-valued
models
We will express the uncertainty concerning the
identification of the elements of matrix G by a set of
parametersθ ∈Θ . Then we can assume a conditional
probability distribution P x xj iθ β( / , ) for

all i , j i i n= + +1 2, ,..., . A widely applied measure of

the divergence between two distributions is the
Kullback information divergence.  By denoting the
corresponding exact probability distribution at a
given inverse temperature with P x xj i( / , )β , we take

the expectation of the Kullback information
divergence with respect to x i :
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Provided thatψ ( )x  is a convex function of x and its

first derivative exists, we can apply the Jensen’s
inequality to the upper expectation of this function
defined on a sequence X  [15]:

E X E X
− −

≥ψ ψ( ) ( )            (16)

Since the Kullback information divergence fulfils the
above conditions by using its expected value given by
Eq. (15) and substituting into inequality (16) we
obtain:
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By making the necessary transformations on the
right-hand side of the above inequality, we obtain:
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To expand further formula (17), we will use the fact
that:

ln ( ) ln exp( ( / ))Z e x xj i
x j

β β= ∑                          (18)

and subsequently:

E Z P x e x xi
x
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On the other hand, P x xj i( / , )β is equivalent to:
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By substituting Eqs. (19), (20) into (17) we obtain:
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So, we finally obtain for inequality (16) we obtain:

 − − ≤ − +E f Z E f E Zθ β θ ββ β, ,( ln ( )) ln ( )       (22)

where,
E f

P x P x x e x x P x xi
x x

j i j i j i
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θ β

θ θβ β β
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,
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(23)
Function f corresponds to the free energy in

thermodynamics. We based the derivation of the
above equation on the maximum entropy principle
and especially to variational expression for free
energy:



f p e= − +ln β                                                  (24)

Inequality (22) yields:

E f E f Z E Zθ β θ β β β, , ( ln ( )) ln ( )≤ − +              (24)

So, to approximate the upper bound of function f ,

i.e. the left-hand side of inequality (24), it is
sufficient to minimise with respect to β and then

maximise with respect to θ  the expression in the
right-hand side of the above inequality.
The computational procedure we follow as to derive
the upper bound of free energy consists of two steps.
At the first step, for all values of temperature and for
each Markov chain separately we minimise the
expression in the right-hand side of inequality (24).
Note that parameters θ  are kept constant during this
step. At the second step, we attempt to maximise the
right-hand side of inequality (24). The maximisation
this time is taken over the parameters θ , while the
inverse temperature is kept constant.

4   Conclusion
A statistical interval-based approach vs. the classical
version of  simulated annealing method is developed
in this paper. We build our approach upon recent
research work on interval-valued functions and
especially their extension to probability distributions.
Fundamental features of the simulated annealing
method with focus on its implementation in discrete
optimisation are briefly discussed. We use
parameterised distributions to represent the
uncertainty inherent in the modeling of the annealing
process. This parameterisation transforms exact
expectations such as the expectation of free energy
into interval-value functions dependent on the
parameters. This transformation makes possible the
use of approximation techniques and consequently
leads to more tractable methodologies in discrete
optimisation.
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