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Abstract: - In this paper we present an interval-valued formulation of Markovian models providing the basis of
the annealing method for discrete optimisation. We keep with the theoretical roots of the above method, yet by
using additional quantities, originated in statistical physics, such as the free energy. Convex anaysis principles
are applied, thus giving rise to the establishment of datistical interval-valued models. Moreover, we use
relations defined on these models such as union and intersection to handle the uncertainty inherent in the
probabilistic description of the annealing process.

In particular, the conditionally independent term that appears as a function either of neighbourhoods or
energies of states in the classical versions of simulated annealing, is assigned a parameterised description. The
addition of the parameters converts the exact representation of the transition probability distribution, at a given
temperature, into a parameterised family of distributions. We then use a joint interval-valued probabilistic model
to represent the annealing process and make use of the Kullback information divergence along with Jensen’s
inequalities applied over random sequences to derive an upper bound on the upper expectation of free energy.
The use of free energy as an evaluation function is justified by fundamental thermodynamic relations. According
to these relations, the free energy represents the algebraic sum of the entropy and the product of energy and the
inverse temperature.

More specifically, the bound comprises two functions. The first function depends on the states and
temperature and coincides with the expectation of the logarithm of the partition function, since the second
function depends on the states and the additional parameters, including the temperature. Computationally, this
bound may be exploited, if we use an approximation agorithm such as a classical simulated annealing version
to calculate expectations by keeping constant values of the parameters. Thus, a a given iteration and by
assuming that the temperature takes on an exact value, we may obtain the exact expectation of the logarithm of
the partition function. At the same time, given that al other parameters are aso kept constant, we obtain an
exact vaue of the difference between the free energy and the logarithm of the partition function. The upper
expectation of this difference represents the second term of the bound on the upper expectation of the free
energy. Then we perform a minimisation of this bound over temperature. In other words, we obtain sections of
partial datistical interval-valued models taken over temperature. Finally, in order to obtain the upper
expectations we perform maximisation over the rest of the parameters except temperature. Note that the
maximisation step affects only free energy and neither the logarithm of the partition function, nor its expected
value.
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probabilities still remain a subject of research. The
1 Introduction two aforementioned issues are strongly interrelated in

Since the past decade simulated annesling has been the sense that the convergence theoretical conditions

established as a viable technique to solving hard cannot often be met in practice. This results in the
optimisation  problems [1-5]. Although the necessity of introducing additional parameters, thus

applicability of this technique is inarguably wide, ~ @ming a reducing the uncertainty inherent in the
several problems concerning issues such as its model of the annealing process. More specifically, in
convergence properties and reliability of estimated the literature of simulated annealing, the transition



between states is expressed by means of a function of
two terms, namey the temperature and a
conditionally independent term associated with either
the energies [5, 6] or the neighbourhood [4, 7] of
these states. Both terms, however, due to inefficiency
of data, induce uncertainty in the probabilistic
description of the annealing process. From an
algorithmic point of view, the whole process is
divided into temperature dependent partiadl Markov
chains by additionally applying a random process
caled the Metropolis process [8]. Variations due to
the temperature are thus replaced by separate
examination of randomly generated Markov chains at
each temperature. The computational procedure is
completed by a cooling schedule [9-11]. A different
approach concerning the conditionaly independent
term, is developed by multi-canonica annedling,
which applies approximations of energy histograms.
Another method completely excluding the Metropolis
process and using deterministic approximations to
describe the annealing process is the mean-field
annealing [12].

An alternative method to finding approximations to
distributions is to represent them by convex sets of
distributions, or treat them as interval-valued or
bounded functions [13-15]. Such methods gave rise
to applications in fields such as parameters
estimation [16-19] and statistical inference [21-22].
In this paper, we aim at applying the formaism of
satigtical interval-valued models [15] on the
underlying Markovian model of the annealing
process. Briefly stated, the computational procedure
consists of the following steps. First, we parameterise
the trangition probability distribution so as to
encapsulate into the parameters the uncertainty
caused either by inefficiencies in the solutions
generation mechanism or the finite length of the
Markov chains. Then, we caculate exact stationary
probability  distributions  and  subsequently
expectations dependent on individua parameters
values. A Monte-Carlo simulation may be used for
this purpose. This implies that exact models are not
abandoned in our formulations. On the contrary, we
use partia exact expectations of the partition
function. Yet, we take into account their variations
with respect to the parameters. Second, we consider
sections of the upper expectation of an evauation
function with the above exact expectations. We
obtain the tightest sections by performing
minimisation with respect to temperature. Finaly, we
caculate the upper expectation of the evauation

function by taking the union of the above sections
over the rest of the parameters.

The present paper is organised as follows. First, we
briefly present the exact formulation of annealing
method based mainly on [4,7]. At the same time, we
point out the inefficiencies of the exact versions of
the annealing method and attempt to establish the
points where the interval-based approach could be
applied. It follows a brief introduction to the interval-
valued statistical models. Note that we concentrate
solely on those concepts and formulations, which will
be used thereafter. Finally, by using fundamental
relationships from satistical physics we derive an
interval-valued approach to the probabilistic model
of the anneadling process and briefly suggest an
agorithmic implementation of this model.

2 Problem Formulation

Consider random mappings of the following form:

X; =w;(x;,bx;) (D),
where,

Xpx; T X,

X; s an independent variable,

X isthe set of states, and

bis the thermodynamic analogue of the inverse

temperature.
Define an evauation function e(x) on X, considered

the analogue of energy in thermodynamics. Then the
transition from state x; to state x; for a given value of

parameter b is[4,7]:
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whereG;;, Ajare  caled the generation and

acceptance probabilities, respectively. The generation
probabilities are identified with the neighbourhood of
X;,X;, since the acceptance probabilities depend on

the energy difference between states x;,x; multiplied

by the inverse temperature. For the sake of simplicity
we re-write the above equation as follows:
P(x;/x;,b)= Gy A; (be(x;/x;)) (3)
To completely determine function P(x;/x;,b) we

have to compute G; ., which is equivaent tox; from

ijs
Eg. 1 and may be viewed as a conditionaly
independent term. To caculate the stationary

probability digtribution of the Markov chan



generated by Eg. 3, we have to assume that matrix
G is irreducible [7]. In other words, we have to
assume that there is dways communication between
every two states x;,X; . However, the generators that
are usualy used to generate sequences of states or
neighbourhoods cannot fulfil this requirement.
Therefore, we may consider that all states are linked
to each other through parameters, thus forming a
parameterised  conditional  distribution  which
hereafter we will denote with B, (x;/x;,b).

3 Problem Solution

Before proceeding to the statistical interval-based
formulation of the above defined process we will give
some preliminary information and notations
concerning the statistical interval-based models.

3.1 Interval-valued expectations and
representation of interval-valued statistical
models

Consider afunction f defined over a set of states X .

Then we define the interval-valued expectation

[E f,E f]of a function f ,

whereE f =supE,f ,Ef =infE ,fandK is a
Pl K - PIK

convex set of probability distributions.

Let us now assume that a function g - defined over
the same set of states- and its upper expectation Eg
are given. Then by applying the dudity principle we
can obtain the upper expectationEf of any
function f given that:

f(X)Ec+Db"g(x) 4
We find the upper expectationEf by solving the
following minimisation problem:

Ef = min[c + b*Eg] (5)
In case that we have more than one functions g such
thatg, T G, Egs (4), (5) yield respectively:

f(EC+Q ¢/ g (x) (6),

_ é o ,—

Ef =mingc + g ¢, Eg; (X)q (7
e i a

The formulae for the lower expectations are similar,
the only difference being that we perform
maximisation instead of minimisation and the
inequalities are taken in the opposite direction.

In many cases it is more convenient to represent
interval-valued statistical models defined on X by a
set of parameters Q. These parameters may be
introduced into the probability distribution, thus
forming a parameterised family of probability
distributions. The union of these distributions taken
over the values of the parameters yields:

Ef =r;}%xqu,§f =TTI<?qu (8

On datistical interval-valued models we can apply
three operations, namely inclusion, union and
intersection. Unions and intersections will be used
extensively in the interval-valued representation of
the annedling process, so we will give a brief
description of these two operations.

Let us consider an arbitrary number of upper
expectations of afunction f T F denotedby Eqf ,
where F is a space generaly dependent on the

parameterq . Then we can obtain Ef by the union or

intersection of the upper expectations Eqf by using
the following formulae:

Ef =maxE f,Ef =minEq f 9
alQ d alQ d ©

for dl qiQ ad for everyfl[)F,,
q
f1 L"(JF,). The symbol L"denotes the semi-
q

linear combination of all F .

Equations (9) ae aso vdid if instead of
parametersq we take interval-valued expectations
dependent on functionsg .

We now give the following theorem on the
representation of Statistical interval-valued models
[15].

Theorem 1. Any interval-valued model E may be
represented as the union of its E. g -intersections,
i.e,

E= U_E (10)

EgEE.gEEg E.g
where, by E. g we denote exact expectations of the
function g. Accordingly, for gl Qthe above
theorem yidlds:
E=UEg (11)
q q
We use the following formula [14] to obtanE. g -
intersections of amodd E :

Eeg f = mcin[E(f - ¢g)+cE.g (12)



By substitutingEg , in Eq. 10 withEe.q f from Eq.

12, we findly obtain the upper expectation of
function f :

Ef = max_ min|E(f - cg)+cE.g (13)

Eg£E.gEEg ¢C

To link the above equation with Eq. 11, which will be
used later, we have to note that the maximisation
may be taken over the parameters q .

Since in the following we will use interval-valued
expectations of joint functions we present briefly the
corresponding definitions.

We denote the joint interval-valued expectation of a

function f (x,y)with [E(f(x,y)),fE( f(x,y)]1,
where:

EY f(x,y)=E Ex f(x,y)and
E¥f(xy)=E"EZf(xy) (14)

3.2 Formulation of the annealing process in
the context of statistical interval-valued
models

We will express the uncertainty concerning the
identification of the elements of matrix G by a set of
parametersq 1 Q . Then we can assume a conditional
probability distribution P, (x;/x;,b) for
ali,j=i+li+2,..,n. A widdy applied measure of
the divergence between two distributions is the
Kullback information divergence. By denoting the
corresponding exact probability distribution a a
given inverse temperature with P(x;/x;,b), we take
the expectation of the Kullback
divergence with respect tox; :

- B(K(R, (x;,X;,0),P(x;,x;,b))=

P(x;/x;,b) (15)
R, (x;/x;,b)

Provided thaty (x) is a convex function of X and its

first derivative exists, we can apply the Jensen’s
inequality to the upper expectation of this function
defined on a sequence X [15]:

Ey (X)*y E(X) (16)

Since the Kullback information divergence fulfils the
above conditions by using its expected value given by
Eg. (15) and subgtituting into inequdity (16) we
obtain:

information

- & POX)A P, (x;/x;,b)In

! ]

- E(K())=

P(x;/x;,b)
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By making the necessary transformations on the
right-hand side of the above inequality, we obtain:
- A P(X)P, (X; 7% b)(In P(x,/x;,b)

XiiXj an
- InPR, (x;/x;,b))
To expand further formula (17), we will use the fact
that:

INZ(b)=1n g exp(be(x;/x;)) (18)
and &Jbsequerjltly:
EInZ(b)=Q P(x;)InQ exp(be(x;/x;))  (19)

On the other hand, P(x; /x;,b) is equivaent to:
exp(be(x: /x;
py = EXP(EC/x,)
Z(b)
By substituting Egs. (19), (20) into (17) we obtain:

X

P(X;

(20)

- A P(x)P, (X, 7%;,b)(In P(x; /x; b)

XisXj

- In PR, (x;/x;,b))=

- A PP, (X, 7% b)(be(x; /%;)-

XisXj

InP, (x,/%,,b) - InZ(b) (21)

So, we finally obtain for inequality (16) we obtain:

- Eqo(f - INZ(b)E-Eqnf +EINZ(b) (22
where,

é P(X; )R, (x;/x;,b)(be(x; /x;)- In B, (x;/x;,b))
Xi X

(23)

Function f corresponds to the free energy in
thermodynamics. We based the derivation of the
above equation on the maximum entropy principle
and especially to variationa expression for free
energy:



f=-Inp+be (24)
Inequality (22) yields:
Eqb f £Eqp(f - INZ(b))+ EInZ(b) (24)

So, to approximate the upper bound of function f ,

i.e. the left-hand side of inequaity (24), it is
sufficient to minimise with respect tob and then
maximise with respect to q the expression in the
right-hand side of the above inequality.

The computationa procedure we follow as to derive
the upper bound of free energy consists of two steps.
At the first step, for all values of temperature and for
each Markov chain separately we minimise the
expression in the right-hand side of inequality (24).
Note that parameters q are kept constant during this
step. At the second step, we attempt to maximise the
right-hand side of inequality (24). The maximisation
this time is taken over the parameters q, while the
inverse temperature is kept constant.

4 Conclusion

A satigtical interval-based approach vs. the classical
verson of simulated annealing method is developed
in this paper. We build our approach upon recent
research work on interval-valued functions and
especially their extension to probability distributions.
Fundamental features of the simulated annesling
method with focus on its implementation in discrete
optimisation are briefly discussed. We use
parameterised  distributions to represent  the
uncertainty inherent in the modeling of the annealing
process. This parameterisation transforms exact
expectations such as the expectation of free energy
into interval-value functions dependent on the
parameters. This transformation makes possible the
use of approximation techniques and consequently
leads to more tractable methodologies in discrete
optimisation.
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