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$EVWUDFW� This paper shows the conditions needed to be able to determine the behavior of the output of a fuzzy
model from the input variables membership functions. This is made possible by breaking down the model into
sections and in the relation between the fuzzy sets and the fuzzy rules for each section. Through this procedure,
we obtain a well-defined relation between the inputs and the output of the model. We present the results for the
approximation of a maximum (minimum) of a fuzzy model with two inputs, and we give the results for the
general case of multi-inputs. Besides, it is an evident necessity to develop the concept of multimodel when at
least two different membership functions for the same fuzzy set for one or more variables of the input are
needed.
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�� ,QWURGXFWLRQ
Fuzzy systems offer a great flexibility for their
application in different kinds of problems. For
example, with a fuzzy model we have the possibility
to take into account expert knowledge, but at the
same time we can adapt the parameters of the model
such that the model can be adapted in order to
approximate a given function with a great degree of
precision. The goal of this work is to show how we
can improve the approximation capability of fuzzy
models when we make better usage of membership
functions of the input variables fuzzy sets. This way,
for a given fuzzy model, an analytical function
between the inputs and the output is found taking
into account the relation that can exist between
fuzzy sets and the fuzzy rules of the model. The
analytical function is composed of the mathematical
function used for membership functions.

There is some research where the authors
demonstrate the influence of membership functions
in the approximation capability of fuzzy models [1,
3-8, 10, 12, 13, 15]. However, in most of the works
found in the literature, linear membership functions
are used, and in many applications linear

approximation may need a great quantity of fuzzy
rules, a situation that could be impractical [2]. From
a well defined inputs- output behavior, it is easier to
select membership functions for fuzzy sets, such that
the use of the appropriate shape of membership
functions give us the possibility to reduce the fuzzy
model size compared with triangular membership
functions that give a linear approximation.

One of the main difficulties for fuzzy model
construction consists in the definitions of the fuzzy
sets for inputs and output variables. The problem is
where to place the kernel of each fuzzy set and how
to define the shape of each membership function. In
[4-6] the authors show that for a good approximation
with fuzzy models, the kernels of fuzzy sets must be
placed in the maxima and minima of the function. In
[5, 6] it is shown that the best way to approach a
given function is to use a membership function that
reproduces exactly the approximated function (see
[6] for an example with two inputs). However, the
construction of the fuzzy model with these
membership functions is more difficult than that of
the identification of the function that we want to
approximate.



In [7] some results are given concerning the
capability of the approximation of a fuzzy model
when different kinds of membership functions are
used. For all the shapes used, the function ( )VLQ [ [ ,
for the most part, proved to give the best results. The
problem with these results is that the correlation
between the function used for the fuzzy sets and the
error of approximation is not clearly seen.

In other works, for example [13, 16], the authors
take into account the dynamics of the approximation
by using linear functions and/or B-splines. This way,
the approximation can be from linear one, for linear
functions [1, 11, 13, 15, 16] to approximations of
superior order for B-splines. The limitation of this
procedure is that the same function is used for all
fuzzy sets.

There is another approach where the relation
among the rate of change of the membership
functions of the inputs to the output is taken into
account in order to determine the rate of change of
the output with respect to the inputs [8, 10]. Here,
we are able to determine the influence near the
kernels of fuzzy sets. However, we can not
determine the output directly from the membership
functions.

In order to get a good approximation, we make
approximations by parties; knowing that fuzzy logic
allows us to do it in a natural way. From this, it is
easy to see that all fuzzy sets of the model are not
restricted to a unique type of membership function,
and when we need at least two membership
functions for the same interval for one or more input
variables, it is better to use the multimodel concept.
This makes the interpretation of the fuzzy model
easier and offers the possibility to get a good
approximation in every party in which the model
was broken. So, we also discussed the problem of
modeling more than one maximum (or minimum).

The paper is organized as follows: in the next
section we present the structure of the fuzzy model
to be used in this work. Section three presents the
analysis of the model in order to deduce the output
as a mathematical function of the inputs and where
the analytical functions for fuzzy sets construction
appears explicitly. Finally, the fourth section
presents some conclusions.

�� 7KH�IX]]\�PRGHO
Consider the fuzzy model with T-norm product for
the implication, ( )7 D E D E, *= , the Lukasiewicz T-

conorm, ( ) ( )6 D E PLQ D E, ,= + 1 , for the aggregation

and center of gravity method for defuzzification,
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There exists the possibility to use several fuzzy
operators for the fuzzy model. However, for the
operators that introduce the same non-linear
behavior in the model, it does not seem very
interesting because the non-linearity can not be
controlled directly. This way, the non-linearity given
by the operators in approximation problems is more
of a disadvantage. This explains, in a certain
measure, why Bounded sum-Product operators are
chosen for applications where error is important in
approximation. Besides, these operators give the
best results for the approximation and allow a
simpler analysis of the model. For example, in [13,
16] the authors compare the results when the
minimum is used at the place of the product
operator.

The defuzzification, as a part of the fuzzy model,
can influence the quality of approximation.
However, in this paper the defuzzification is used
only as an interface between the fuzzy domain and
the numeric domain [9].

Now, if input values are precise, the model can
be analyzed by parties [11, 14] (see Fig. 1). For the
model considered, take the index of the conclusions
as the sum of the index of the fuzzy sets of input
variables, as 

1��
LLLN +⋅⋅⋅++= , and if the output

fuzzy sets 
N

%  are in order, such as

⋅⋅⋅<<⋅⋅⋅<<
N

%%% 10
 (or ⋅⋅⋅>>⋅⋅⋅>>

N
%%% 10

), and

uniformly distributed, then the relation among the
output variable and the input variables are linear (see
for example [1]).

When the index of the output fuzzy sets are given
as the sum of the input fuzzy sets, the necessary
fuzzy sets for the output can be calculated as

( ) ∑ =
+−=

1M M\
Q1Q

,1
1 , where 1 is the number

of inputs, and 
\

Q  and 
M

Q , 1��������M = , are the

number of fuzzy sets for the output and the inputs
respectively.
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Fig. 1: Sections where the fuzzy rules can be
activated at the same time.

�� )XQFWLRQ� DSSUR[LPDWLRQ� ZLWK� WKH
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In order to simplify the analysis, take into account
only a section of the model as shown in Fig. 1. This
model has two inputs, [

�
 and [

�
, and an output, \.

The breakdown of the model is in accordance with
the rules that can be activated at the same time [11,
14]. So, for 1 input variables, there are

( )∏ = −
1��M M

�Q  independent sections [14]. If we only

take one section, the number of necessary output
fuzzy sets, calculated with ( ) ∑ =

+−=
1M M\
Q1Q

,1
1 , is

�1Q
\

+= .

For the model to be analyzed, the input variables,

�
[  and 

�
[ , are defined in [ ]10 11

, −Q
DD  and

[ ]10 22
, −Q
DD  respectively. However, we take only the

intervals [ )111
, +LL
DD  and [ )122

, +LL
DD  for the analysis

in this paper, as it is shown in Fig. 1. In this way, we
have 4 rules activated:
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(1)

In the most general case, the conclusions for
fuzzy rules are all different. So, we consider this
case at first and then we consider the index of the
conclusions as the sum of the index of the inputs (we
have several rules with the same conclusion). In the
rules stated previously, that means 

�N�N
%% ++ ′= . We

use this condition when we generalize the results of
the model with 1 inputs.

The fuzzy sets 
ML

$ , 
M

Q��L = , for the inputs 
M

[ ,

���M = , are defined as increasing, 
��L M

I , and

decreasing monotonous functions, 
��L M

I , and they

must be bounded.

( ) ( )




≤
<≤

=
F

FF

F [D

D[D[I
[$

F

FFF

F

1

102,0

0 0

( )
( )
( )









≥>
<≤

<≤
=

+−

+

−

11

12,

11,

0
FF

FFF

FFF

F

LFL

LFLFL

LFLFL

FL

D[D

D[D[I

D[D[I

[$

( ) ( )




<
≤≤

=
−

−

1

11,

0
F

FFF

F

QF

QFQFQ

FQ D[

D[D[I
[$

(2)

where [ ]1,0:, →
FGL

;I
F

, ���F = , 2,1=G , and

�LL�L
DDD +− << , ( )1...,,0 −= QL . Besides, the

condition of strict fuzzy partition,
( ) ;[[

QL
$

L

∈∀=∑ =
,1

,1
µ , is imposed for all the

variables. For the fuzzy sets of the output 
N

% , we

only use triangular membership functions.
Furthermore, we suppose the kernels of the fuzzy set

1+N%  defined in the interval [ ]
�NN

E�E + . This allows

for 
�N

E +  and 
�N

E +′  to be in this interval and then the

fuzzy sets are in order. The order can be increasing
or decreasing, it depends if we model a maximum or
a minimum. The functions 

���L�

I +  and 
���L�

I +  can



also be defined as  ( ) ( )
FLFL
[I[I

FF
2,1,1 1 −=+ ,

[ )1, +∈∀
FF
LLF
DD[ , ���F = .

For the set of rules (1), the output corresponds to
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but, as we have a strict fuzzy partition, 10 =' , then

the output is 
01\ = .

Now, consider the relations
( )

�N�N��N
E�EE ++ −+= ββ  and  ( )

�N�N��N
E�EE ++ −+=′ ββ ,

with [ ]����
��

∈ββ . With these relations and taking
into account the hypothesis of the fuzzy strict
partition, the output can be written as
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If we take 
�N�N

EE ++ ′= , 
��

ββ = , the output is
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Notice that the main difference among (3) and (4)
is the number of coefficients of each term. In (4)
there is a coefficient for several terms, in (3) there is
a coefficient for each term.

We can simplify (4) with the choice of a correct
value for the kernel of 1% . For example, if we take

β
�

� �= , or ( )E E E
N N N+ += +

� �
� , we get the

additive part of the equation. That is
( )( ) ( ) ( )[ ]21112 21

2 [$[$EEE\
LLNNN +++ +−+= . From

(2), we can write

( ) ( ) ( )[ ]
����L����L

N�N

N

[I[I
�

EE
E\

��
++

+ +−+=

This equation shows how the output is a function
of the inputs directly defined by the membership
functions of the inputs fuzzy sets.

([DPSOH��Consider the modeling of a maximum of a
function. This corresponds to 

�
%  in Fig. 2.a. The

fuzzy sets of the inputs and the output are given in
Fig. 2.a and Fig. 2.b. The fuzzy rules are also given
in Fig. 2.a. For example, the fuzzy rule for the
maximum is 

21211 21
%LV\7KHQ$LV[DQG$LV[,I .
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Fig. 2: The fuzzy model for the maximum 2% .

In order to analyze the model consider four
sections: $, [ ) [ )

���� ����
D�DD�D × , %, [ ) [ ]

����
����

D�DD�D × ,

&, [ ] [ ]
����
����

D�DD�D × , and ', [ ] [ )
����
����

D�DD�D ×

(see Fig. 2.a). If we take ( ) �EEE
���

+=  of 
�

% , the

output for $, %, &, and ' is
( )( ) ( ) ( )[ ]2111020 21

2 [$[$EEE\ +−+= .

Now, the fuzzy sets for the inputs 
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[  and 
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with ( ) ( )( ) ( )�[�[VLQ[I
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−−= ππ . In this case,
we have for the output
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that is defined by the membership functions of the
inputs. The Fig. 3.a shows the results of simulation
of the model.



1
1.5

2
2.5

3

1
1.5

2
2.5

3
0

0.2

0.4

0.6

0.8

1

1
1.5

2
2.5

3

1
1.5

2
2.5

3
0

0.2

0.4

0.6

0.8

1

a) b)
Fig. 3: Simulation of the fuzzy model with
membership functions ( )VLQ [ [  for the inputs.

Now, if we take �
�

=β  in (4), that means

N�N
EE =+ , the output is
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+++ −+= , or as an

explicit function of membership functions
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So, with the membership functions defined by
( ) [[VLQ , the output is
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The results of simulation of the model are
showed in Fig. 3.b.

����)X]]\�PRGHO�ZLWK�1�LQSXWV
As in the previous case, the output of the fuzzy
model is a multilinear function when we have 1
inputs ( )�1 ≥ . So, if we use the right value for the
kernels of the output fuzzy sets, we can simplify the
multilinear function. For example, consider the input
variables [ [ [

1� �
� � ���� , defined in ; ; ;

1� �
� � ���� ,

and the output \, defined in <. For the fuzzy sets of

M
[ , 1��M = , we use the notation 

ML
$ ,

�Q��L MM −= , and for \ the notation is 
N

% ,

�Q��N
\

−= , with kernels 
N
E . For each variable, the

fuzzy sets form a strict fuzzy partition.
For the analysis take only a part of the model, as

shows Fig. 1 for two variables. For this section of
the model we need �1Q

\
+=  fuzzy sets of the

output. Furthermore, if the fuzzy set 
N

%  of the

output for each rule is defined in function of the

input fuzzy sets 
ML

$  and 
�L M

$ +  for each variable 
M

[ ,

that is 
1��
LLLN +⋅⋅⋅++= , the fuzzy rules can be

written as

1NL1LL

NL1LL
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Now, if the kernels of 
DN

% + , D 1= −� � �� � ���� ,

must be between those of 
N

%  and 
1N

% + , that is, in

the interval [ ]
1NN

E�E + , the kernels can be calculated

as ( )
1NDNDDN

E�EE ++ −+= ββ , D 1= −� � �� � ���� ,

[ ]1,0∈
D

β .

The relation among the inputs and the output is

( ) ( ) ( )
{ }

∑
=

+++⋅⋅⋅++ ⋅⋅⋅=
1,0...,,,
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21

1
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1

1

11

NNN

1

N

L

N

LNNN
[$[$F\

where { }
1��
[�����[�[[ = , and ( )1NNN

F +⋅⋅⋅++ 21
 are the

coefficients of the function.
In order to simplify this relation, the kernels 

DN
E +

of the output fuzzy sets must be uniformly
distributed in the interval [ ]

1NN
E�E + . That is simple if

we take the kernels ( )( )
N1NNDN

EE1DEE −+= ++ ,

1...,,2,1 −= 1D . Then, the output is

( ) ( )∑
−+= +

M
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N1N

N
[$

1
EE

E\
M

If the kernels of the output fuzzy sets are

NDN
EE =+ , for 1...,,2,1 −= 1D , the output is

( ) ( )∏−+= +
M

MLN1NN
[$EEE\

M

Here, the most important is that these expressions
can be written such that the input membership
functions appear explicitly (see (2)). However, if we
have more than one maximum or minimum or both
to model, but the shape for each one is different, we
have to separate each maximum or minimum and
model each one with a fuzzy model. See the next
figure for example where each maximum and/or
minimum is considered to be modeled by a model,

10  and 20 , and not as two sections of one model.



When we only use a model, we need to choose a
membership function of both needed for the model;
or a compromise of them. This is not the case for the
multimodel which in reality offers a great flexibility
for using several membership functions for the same
fuzzy set but where we have the possibility to make
a good local approximation for each section
considered.
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Fig. 4: Two models for linear and non linear
approximation of maximums and/or minimums.

�� &RQFOXVLRQV
The interest of the results is that we can utilize an
analytical expression, where the influence of the
functions used for the fuzzy sets is stated clearly
with respect to the output. This way, the choice of
the membership functions for each input fuzzy set
depends on local behavior.

This allows us to use the known facts about the
behavior of the system to be modeled into the fuzzy
model, because we can translate this behavior by the
membership functions of the inputs. Besides, the
better approximation of the behavior with the fuzzy
sets allows using fewer elements in the model, so we
can reduce the size of the model with good
approximation results.

Finally, when we have several maximums or
minimums, or both, the concept of multimodel, each
model for a section of the initial model, can be used
in order to define different membership functions
that allows for a good approximation. Nevertheless,
the problem with the transition between the models,
if the output corresponds to an additional function,
still remains. But this is not a problem when the
output is a product of the inputs.
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