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$EVWUDFW� ���A computer-aided diagnosis (CAD) scheme to detect clinically normal mammograms is presented.
The objective is to develope a method for the automatic recognition of normal mammograms with a very low
probability of classifiying abnormal images as normal. Since the radiologist spends an enormous amount of
time investigating images lacking any abnormality, and the vast majority of mammograms are clinically
normal, the method would potentially save valuable time.

The method is divided in two steps. The first step accomplishes a feature enhancement to improve the
visualization of any abnormal lesion. Multiscale wavelet representations of the mammographic images are used
for this task. A multiscale representation of a mammogram provides a set of images, each of them giving a
different scale view of the initial mammogram. Abnormal mammographic lesions appear enhanced in one of
more than one of the images, that means, their intensity profiles appear emphasized. These lesions appear as
singularities easier to discriminate than in the original image.

The second step obtains a set of parameters that compiles the information from the first step. Parameter
examples are mean pixel intensity values and standard deviation of the pixel intensity values in the regions of
interest. This set constitutes the input to a detector. A neural network optimized in the Neyman-Pearson sense is
used as a detector. For training the neural network, a data base with normal and abnormal mammograms (with
biopsy proven abnormal lesions) is used.                        IMACS/IEEE  CSCC’99  Proceedings, Pages:2051-2055
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����,QWURGXFWLRQ
Screen/film mammography has been widely
recognized as being the only effective imaging
modality for the early detection of breast cancer in
asymptomatic women. Screening asymptomatic
women using screen/film mammography has been
shown to significantly reduce breast cancer mortality.
Major advances in screen/film mammography have
occurred over the past decade which have resulted in
significant improvements in image resolution and
film contrast. Despite these advances, however,
screen/film mammography remains a diagnostic
imaging modality where image interpretation is
difficult.

An early sign of disease in 30-50% of
mammographically detected cases is the appearance
of clusters of fine, granular microcalcifications [1]
whose individual grains typically range in size from
0.05-1 mm in diameter. Individual
microcalcifications are difficult to detect because of
variations in their shape and size and because they

are embedded in and camouflaged by varying
densities of parenchymal tissue structures. Computer-
aided diagnosis (CAD) schemes using digital image
processing techniques have the goal of improving the
detection performance of secreening mammography.

An important branch of CAD methods for feature
enhancement in mammography employs wavelet
transforms [2]-[5]. Our proposal for detecting
microcalcifications in mammograms is to perform a
multiscale edge detection [6] and analyse the
properties of the edges that have been detected. The
information obtained from the above process can be
packed in a set of parameters, which constitutes the
input to a detector. A neural network will perform the
detection task. This neural network must have been
previously trained with a sufficient amount of
examples corresponding to proven normal and
abnormal mammograms regions.

Since the vast majority of mammograms are
normal, our interest will be focused in detecting
clinically normal mammograms. The final objective



is to save the valuable time that radiologists spend
analysing normal mammograms. Therefore the most
important factor is to achieve a Pfa (false alarm
probability) for the neural detector zero or close to
zero, that is, abnormal regions must not be detected
as normal. This optimization of the Pfa leads to a
decreasing of the Pd (detection probability). This
means that an amount of normal mammograms could
not be detected and, then, considered abnormal. But
this has less impact, since the abnormal
mammograms will be further analysed by
radiologists.

The paper is organized as follows. Section 2
focuses in the analysis of the mammographic data.
Section 3 reviews the wavelet transform properties
and relates multiscale edge detection to the wavelet
transform. Section 4 proposes a clinically normal
mammograms detection scheme employing a neural
network with the wavelet preprocessing introduced in
Section 3, including the obtained results. We finalize
with discussion and conclusions in Section 5.

��� &KDUDFWHULVWLFV� RI� PDPPRJUDSKLF
LPDJHV
Although mammography currently is the best method
for the detection of breast cancer, between 10% to
30% of women who have breast cancer and undergo
mammography have negative mammograms. In
approximately two thirds of these false-negative
mammograms, the radiologist failed to detect the
cancer that was evident retrospectively. The missed
detections may be owing to poor image quality, eye
fatigue or oversight by the radiologist. Double
reading has been suggested, with the number of
lesions found increasing by 15%. Thus, the goal of
CAD research is to develop computer methods as
aids to the radiologists, in order to increase
diagnostic accuracy in mammography screening
programs.

Microcalcifications are often a presenting sign
among early breast cancers. On screening studies,
90% of all cases of nonpalpable ductal carcinoma in
situ (DCIS) [8] and 70% of all cases of minimal
carcinoma (infiltrating cancer smaller than 0.5 cm
and all DCIS) were seen on the basis of
microcalcifications alone.

The search of microcalcifications lends itself to
computer detection methods because of their high
clinical relevance and the lack of normal structures
that have the same appearance. Individual
microcalcifications appear as small (typically 0.05-1
mm) particulate objects of variable shape (from
glandular to rod-shaped) and fairly uniform optical

density. A typical example of microcalcification is
presented in Figure 1. Although microcalcifications
vary in outline and degree of elongation, the average
form is roughly circular, with a tapered cross-
sectional profile. Microcalcifications often appear in
clusters.
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)LJXUH����Example of circular microcalcification in a
region of 1cmx1cm.

The visibility of microcalcifications is often
degraded by the high frequency texture of the breast
tissue. Special attention must be paid in not to
confuse singularities owing to breast tissue with
those owing to microcalcifications.

A different type of lesions in mammograms are
mass lesions. The computerized detection of mass
lesions is different from that of microcalcifications
because of some mass lesions and some normal
parenchymal tissues mimic each other, thus making
the interpretation difficult for both the human and the
computer. In this work we are not involved with this
type of lesions.

Once a lesion is detected, benignancy or
malignancy must be determined. We are concerned
only in detection of microcalcifications, without
further analysis.

�� :DYHOHW� UHSUHVHQWDWLRQV� RI� LPDJHV
DQG�PXOWLVFDOH�HGJH�GHWHFWLRQ
Let ψ1([,\) and ψ2([,\)∈L2(52) two bidimensional
wavelet functions and a integer M. We denote that:
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The wavelet transform of a function I([,\) ∈L2(52) at
the scale 2M has two components defined by the
following convolutions:
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We refer to the 2-D dyadic wavelet transform of
I([,\) as the set of functions:
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We use the term 2-D smoothing function to
describe any function θ� ([,\) whose integral over [
and \ is equal to 1 and converges to 0 at infinity. The
image I([,\) is smoothed at different scales V by a
convolution with θ

V
([,\) = (1/V2)θ� ([/V,\/V). If we

define:
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it can be easily proved [6] that the wavelet transform
can be rewritten
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The two components of the wavelet transform are
proportional to the two components of the gradient
vector of the function I smoothed at the scale 2M. The
first component measures how sharp I([,\) smoothed
at a scale 2M varies along horizontal directions, while
the second component measures the variation along
vertical directions. At each scale 2M, the modulus of
the gradient vector is proportional to:
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The angle of the gradient vector with the horizontal
direction is given by:
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The sharp variation points of I� * θ
V
([,\) are the

points ([,\) where the modulus 0
V
I([,\) has a local

maximum in the direction of the gradient given by
$

V
I([,\). We record the position of each of this

modulus maxima as well as the values of the modulus
0

V
I([,\) and the angle $

V
I([,\) at the corresponding

locations. At fine scales, there are many local
maxima created by the image noise, but at this
locations, the modulus value has a small amplitude.
We are interested in edge points whose modulus is
larger than a given threshold at all scales. At coarse
scales, the modulus maxima have different positions
than at fine scales. This is due to the smoothing of
the image by the function θ

V
([,\)

Sharp variations of 2-D signals are often not
isolated but belong to curves in the image plane.
Along these curves, the image intensity can be
singular in one direction while varying smoothly in
the perpendicular direction. It is well known that
such curves are more meaningful than edge points by
themselves beacuse they generally are the boundaries
of the image structures. For discrete images, we
reorganize the maxima representation into chains of
local maxima to recover these edge curves. Then, we
can characterize the properties of edges from the
modulus maxima evolution across scales.

At the scale V, the wavelet modulus maxima
detect the sharp variation points of I�*θ

V
([,\). Some

of these modulus maxima define smooth curves in
the image plane along which the profile of the image
intensity varies smoothly. At any point along the
maxima curve,
the gradient of I� * θ

V
([,\) is perpendicular to the

tangent of the edge curve. We thus chain two
adjacent local maxima if their respective position is
perpendicular to the direction indicated by the angle
$

V
([,\). Since we want to recover edge curves along

which the image profile varies smoothly, we only
chain together maxima points where the modulus
0

V
I([,\) has close values. This chaining procedure

defines an image representation that is a set of
maxima chains.

���0LFURFDOFLILFDWLRQV�GHWHFWLRQ�PHWKRG
DQG�UHVXOWV

In this section we introduce a CAD method to detect
the presence of clustered microcalcifications in
mammograms. First we perform a multiscale feature
enhancement and secondly we propose a detector
adapted to the preprocessed images.

���� )HDWXUH�HQKDQFHPHQW
We perform a feature enhancement with a multiscale
analysis. The objective in this step is to remove as
much as possible information which is not relevant.
We refer to intensity variations owing to
parenchymal tissue structures and film noise. The
first step is to obtain a dyadic wavelet transform of
the full breast area with mother wavelets defined as
in (2.4). Once obtained we can compute the modulus
and the angle of the gradient vector (2.5) for each
scale 2j, as well as the sharp variation points inside
the breast area.

The majority of these sharp variation points do
not correspond to lesions in the mammogram, thus
we can eliminate them. The removing criterion is to



establish a threshold value, we keep the singularities
whose gradient modulus values overcome this
threshold. As a first threshold value we select a half
of all maxima values.

At this point we have reduced the information
content of the mammogram to a set of singularity
points. The characteristics of this set determine the
normality or abnormality of the mammogram.

Figures 2 and 3 show a region of a mammogram
before and after the multiscale feature enhancement.
As it is shown, most of the noise and tissue variations
are removed in the processed image, remaining the
three present microcalcifications.
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)LJXUH����Mammographic area with three proven
microcalcifications.
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)LJXUH����The same mammographic area after the
multiscale enhancement process.

���� 'HWHFWLRQ
We have selected an artificial neural network to
perform the detection task. Artificial neural networks
constitute a nonalgorithmic approach to information
processing. These neural networks, which are
capable of processing a large amount of information
simultaneously, address problems not by means of
prespecified algorithms but rather by learning from
examples that are presented repeatedly. The

popularity of neural networks is due primarily to
their apparent ability to make decisions and draw
conclusions when presented with complex, noisy or
partial information and to adapt their behaviour to
the nature of the training data. In medical imaging,
artificial neural networks have been applied to a
variety of data-classification and pattern recognition
tasks, such as the differential diagnosis of interstitial
diseases, and have been shown to provide a
potentially powerful classification tool [10].

We propose a three-layered feedforward neural
network with a backpropagation algorithm for the
interpretation of the mammographic features. The
enhanced image is divided in regions of size 8x8
pixels, corresponding to regions of 1.5mmx1.5mm.
Both the mean intensity value and the standard
desviation will  be higher for regions containing a
microcalcification, as can be observed in Figure 4.
This figure shows the microcalcification in figure 1
after enhancement. In consequence, these two
parameters are selected as input to the neural
network.
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)LJXUH����Microcalcification in Figure 1 after
enhancement.

We have trained a three layer neural network
with two inputs and one output by means of the
cross-validation method, achieving a Pfa value of
0.001, with a Pd of normal mammograms of 50%.
This early result predicts the success of the wavelet-
based tools and motivates further investigations.

����Conclusions
The proposed method emphasizes the ability of
wavelets to perform feature extraction. In
applications where the amount of information to
manage is large they offer a potential tool that have
been proved in several fields.

One of these fields is the detection and
characterization of singularities in images. When the



images are constituted by mammograms, we can use
this potential for detecting microcalcifications, due to
the characteristics of this type of lesions. In this
proposal we have combined the properties of wavelet
processing with characteristics of mammographic
lesions to improve their visualization. The
emphasized characetristics combined with a neural
network detector lead to a detection method of
normal mammograms with very low probabilities of
classify abnormal mammograms as normal.
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