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Abstract: - The paper is in the line of the theoretical approach to discrete-events dynamic systems
modelling developed in the frame of the manufacturing algebra [1-3]. A discrete-event dynamic sys-
tem representation by state equation consistent with the Kalman classical definition of dynamic
systems is introduced. The time is assumed to be a real variable, the system inputs and outputs are
asynchronous event sequences, that is sequences of events which occur at a countable time instant set
not a priori defined. The system state is described by state variables which are functions of the time
real variable. Then, the state is defined at any time instant, while inputs and outputs are events de-
fined over input and output countable time sets. 

Hybrid systems are introduced, where inputs and outputs are both event sequences and time
functions.

The proposed approach results appropriate for modelling at any level of detail the discrete
manufacturing systems, allowing to give a description of the production processes in terms of state
equatiions. 
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1      Introduction
A new approach to discrete-events dynamic
systems has been recently developed in the frame of
the Esprit project HIMAC devoted to discrete
manufacturing plant modelling and control as part
of the manufacturing algebra [1-3].

Here a synthesis of the previous results is pre-
sented and the approach is extended with some re-
finements to the hybrid systems (continuous-time
and discrete-event dynamic systems).

The starting point of the approach  followed is
the dynamic system concept, originally developed
by Kalman [5], based on the input, state and output

variables and their dynamic relations. According to
the above classic concept inputs u(t), states x(t) and
outputs y(t) are multidimensional real variables
which are functions of the time t, which can be real
variable (continuous-time systems) or  integer vari-
able (discrete-time systems). A dynamic (strictly
causal) system is then described by the following
state equations:

Continuous-time system:

x
.
(t) = F(x(t), u(t), t)

y(t) = G(x(t), t)

Discrete-time system: 

x(i+1) = F(x(i), u(i), i)



y(i)      = G(x(i), i)

The above definition of dynamic system can not
be immediately extended to discrete-event dynamic
systems, but for the particular case in which the
word "event" indicates the presence of a pulse se-
quence in the admissible input functions, consid-
ered as real functions of the real time variable. This
fact justifies the wide literature concerning discrete-
event systems, with sometimes very different defi-
nitions and approaches. 

In spite of such a variety of methodologies go-
ing from the very common Petri-Nets and automata
to the perturbation methods or to the max-plus alge-
bra, we have found that the already existing meth-
odologies are not well suited to model those physi-
cal systems (the manufacturing discrete systems)
for which we had to develop a general control
methodology [4]. So we have formulated the new
approach presented in this paper.

In order to explain what we mean by "event"
and by "discrete-event dynamic system", let us con-
sider the following simple example, which is very
similar to some production units used in discrete-
manufacturing plants: a drink slot-machine
equipped with memory. The machine is com-
manded by means of a push-button panel, where
each button corresponds to a drink: coffee, tea, coca
cola etc. Whenever a button is pushed (input event
to the system or cause event) the machine dispenses
after a certain working time the requested drink
(output event from the system or effect event). If
another button is pushed when the machine is still
working, the machine accepts the new order and
puts it into a waiting-list served later according to
some criterion (e.g. FIFO).  When a product has run
out, the next one in the list is dispensed until the
waiting-list is cleared out.

The machine’s input is an event sequence (inde-
pendent and unpredictable), each event being de-
scribed by a fact (drink requested) and by a time
(time instant at which the event occurs). The output
system is also an event sequence, each event being
described by a fact (drink dispensed) and by a time
(time instant at which the event occurs). The input
and output events occur in a countable but not a

priori  defined set of instants. Therefore the system
can not be treated as a discrete-time system: in ef-
fect the time set is not countable but continuous, be-
cause the input and output events can occur at any
instant not a priori defined. The system state vari-
ables should be continuous-time function, while in-
puts and outputs are discrete-event sequences. Such
a system is denoted here discrete-event dynamic
system.

2      Time, Events And Event
Sequences
The time set. Let us introduce the real variable t
named "time". The generic finite or infinite time in-
terval T = [t1,t2] is  named time set.

The fact set.  Let Ξ be a set of elements ξ∈Ξ
called facts.

The event set. Given a time set T and a fact set
Ξ, the following Cartesian product is defined
E=T×Ξ. The elements e=(t,ξ)∈E are called events.
Any event is therefore described by the pair  t =
"the occurrence time instant of the event", ξ = "the
fact associated with the event".

Event sequences or event lists. An event se-
quence (or event list) σ is a countable (finite or infi-
nite) set of events {e(i)=(t(i), ξ(i))}  i∈[1,m] belong-
ing to the same event set E, which is put in corre-
spondence one-to-one with a segment of natural
numbers [1-m] m∈N, so to result strictly ordered
with respect to the variable time, i.e. with the con-
straint  t(i)>t(j)  for i>j.  

In the following an event sequence (or event
list) will be denoted by σ, when the sequence is
considered globally, that is :

σ = {e(i)=(t(i), ξ(i))}  i∈[1,m]. (1)

The i-th element of the sequence (or list) is de-
noted e(i) or (t(i),ξ(i)), being e(i)=(t(i), ξ(i)). Of
course, when i is varying over the sequence (or list)
definition segment [1-m], the single event e(i) may
be used also to denote the global sequence (or lists)
to which it belongs.

In the following the term event sequence is al-
ways used when t(i)∈T is the current time. On the



contrary when the above real variable t(i) is not the
current time (but for instance a date) and the above
event set is taken as a whole and considered as
function of the current time, the term event list is
normally used. Of course, event sequences or lists
are the same mathematical object with the same
properties.

Event unicity. By assumption, it is excluded that
two different events can occur at the same time (si-
multaneous events). But it is accepted that more
than one fact may be associated with the same
event.

When a plurality of facts can be associated with
the same event, the above plurality is defined to be
a fact belonging to the  set Ξ . Then:

• an event sequence can not have simultaneous
events;

• the facts associated with an event, belonging to
an event sequence, can always be described by
a single element of the fact set Ξ.
Properties of the fact set. In the following two

different kinds of event sets are considered, which
are equipped with different properties, as follows.

• The fact set Ξ is a linear space over R (set of
real numbers), i.e. two operations, the addition
and the scalar multiplication, are defined over
the set Ξ, with their well known properties. 
The addition of facts defines the fact equivalent
what means that, whenever different facts are
associated with a same event, the equivalent
fact is given by their addition.
Example. In manufacturing algebra events are
considered, where the facts are object draw-
ing/delivery operations. The fact set is then the
quantity vector linear space Q [1].

• The fact set Ξ is a finite set which does not
have other specific properties. Different facts
are not mutually compatible, that is they can
not be associated with the same event.
Example. In manufacturing algebra [10] events
are considered, where the facts are commands
applied to a production unit in order to select
the specific manufacturing operation to be per-
formed. The fact set is the finite set of the

manufacturing operation, which can be per-
formed by the production unit considered. Only
one manufacturing operation at a time can be
performed and then commanded whenever the
production unit is memory-less.

The event sequence (or list) set. The set of all
countable (finite and infinite) sequences (or lists),
which can be constructed over the event set
E=T×Ξ, will be denoted by  Σ(E). 

Over the set Σ(E) of the event sequences, the
following operations are defined. 

Restriction of an event sequence. The restriction
σ’ of an event sequence σ to a time interval  t(i)>t is
a sub-sequence σ’∈Σ(E) of σ which includes only
the events e(i) occurring at times t(i)>t. 

The restriction operation will be denoted by
σ’=σ(t(i)>t ).

Addition of event sequences. Two cases are con-
sidered:

1) The fact set Ξ is a linear space. Given two se-
quences σ1,σ2∈Σ(E), let us consider the union
set σ1∪σ2 of all the events of the two sequences.
Simultaneous events are assumed to be the same
event and their facts are added up. The resulting
set is ordered with respect to the time variable t ,
giving the addition σ3=σ1+σ2.

2) The fact set Ξ is a generic finite set. Two se-
quences σ1,σ2∈Σ(E) are said to be summable if
and only if one has not events simultaneous to
the events of the other one. When two event se-
quences  are summable, their addition is ob-
tained as described above.

The addition of event sequences defined in
Σ(TxΞ) has the commutative and associative prop-
erties.

Event sequence linear space. If the fact set Ξ is
a linear space, the corresponding event sequence set
Σ(TxΞ) is a linear space where the addition is de-
fined as above and the scalar multiplication and the
addition properties are induced by the properties of
the linear space Ξ.



3      Discrete-Event Dynamic Systems
A discrete-event dynamic system is a system whose
inputs and outputs are event sequences. In other
words it is an operator which maps a set of admissi-
ble input event sequences into a set of output event
sequences. In the following the class is considered
of the discrete-event dynamic (causal) systems de-
scribed by state equations.

With reference to the basic definitions intro-
duced in the previous paragraph, the following no-
tations are used.

Let T be the time set  and t be the current time.

Let us denote by σu={eu(j)} the input event se-
quence, being 

• U the set of facts u, 

• Eu=TxU the set of the input events
eu(j)=(t u(j),u(j)),

•  Ω⊂Σ(Eu) the set of the admissible input se-
quences.

The concatenation property holds in the set  Ω
of the admissible input sequences.

Let us denote by σy={ey(j)} the output event
sequence, being 

• Y the set of facts y, 

• Ey=TxY the set of the output events
ey(i)=(t y(i),y(i)),

• Σ(Ey) the set of the output sequences.

Input and output events are not synchronous
and generally they do not have the same periodicity.
To describe the input-output relation two different
sets of system state variables are introduced, as fol-
lows.

• The real variable tc∈T denoting the system
clock time.

• The finite event list σx(t)={ex(i)=(t x(i),ξ(i))}
i∈[1,m], where tx(i)≥tc
The time evolution of the real variable tc is not

depending on the input event sequences, being de-
scribed by the differential equation:

                      tc
.
 (t) = 1 (2)

The finite event list σx(t) is subject both to a
free evolution not depending on the system inputs

and to a forced evolution caused by the input event
occurrence. The free evolution occurs when the sys-
tem clock time tc is equal to the occurrence time
tx(1) of the first event of the state event list σx(t),
that is when the following logic expression is true:

tc(t) = tx(1) (3)

The state event list evolution is then described
by the relation:

σx(t+) = Fσ(σx(t),t) (4)

 The state event list forced evolution caused by
the input event eu(j)=(t u(j),u(j)) occurs at the input
event time t=tu(j) and is described by the relation:

σx(t+) = Fu(σx(t),eu(j)) (5)

 Considering a strictly causal system, output
events are related only to the free evolution of the
state event list σx(t). Then, when the logic expres-
sion (3) is true, the i-th output event
ey(i)=(t y(i),y(i)) occurs described by the relation:

ey(i)=(t x(1),gy(ξ(1),t)) (6)

where, of course, ex(1)=(tx(1),ξ(1)) is the first
event of the list σx(t) at the time t at which the logic
expression tc(t) = tx(1) is true, that is ex(1) is the
occurring event of the state event list σ. The output
event sequence is then synchronous with the occur-
rence of the events of the state event list σx.

4      Two Simple Examples
In order to clarify the above stated concept of
discrete-event dynamic system, two simple exam-
ples are now given. The first one corresponds to the
mathematical model of the drink slot machine al-
ready described in the introduction, the second one
is the mathematical model of an unstable flip-flop.
4.1 The Drink Slot-Machine Model

Let Ξ be the set of the available drinks and let us
denote by u∈Ξ an ordered drink, by ξ∈Ξ a sched-
uled drink and by y∈Ξ a produced drink. Then it re-
sults:
• eu(j)=(t u(j),u(j)) is the input event sequence,

being tu(j) the time at which the j-th drink u(j)
is ordered;

• σx(t)={ex(k)=(tx(k),ξ(k))} k∈[1,m], is the state



event list at the time t corresponding to the or-
dered drinks ξ(k) not yet  produced with their
production scheduled time tx(k); 

• ey(i)=(t y(i),y(i)) is the output event sequence,
being ty(i) the time at which the i-th drink y(i)
is produced.

Each time an input event eu(j)=(t u(j),u(j)) oc-
curs, the scheduled time tus(j) for the ordered drink
production is computed and the drink production
event is scheduled by adding the event
(tx(m)=tus(j) , ξ(m)=u(j)) in the last position (m-th)
of the state event list. The above state event list up-
dating represents the forced state evolution gener-
ally described by Eq. (5).

In order to describe the system free evolution
the system clock time tc must be introduced, being
tc the time respect to which the production schedul-
ing is performed. In an ideal condition the machine
time tc increases as the true time t  and it results:

                tc
.
 (t) = 1

but in a more general condition it may be:

 tc
.
 (t) = 1 + ε(t)

where ε(t) models a perturbation in the machine
production time. When such a perturbation is intro-
duced either as an input system stochastic distur-
bance or by a continuous-time dynamic model, an
hybrid (discrete-event and continuous-time) system
is obtained as presented in the next section.

When the logic expression (3) is true, that is
when the system clock time tc(t) is equal to the oc-
currence time  tx(1) of the first event of the state
event list σx(t), the scheduled drink ξ(1) is pro-
duced giving a new output event, the i-th event of
the output event sequence:

ey(i)=(t y(i)=t, y(i)= ξ(1)) 
At the same time t for which it results

tc(t)=tx(1) the state event list σx(t) is updated: the
first event of the list is removed and the list is reor-
dered by forward shifting the list events.

4.2 The Unstable Flip-Flop

The input event facts belong to the following fi-
nite set U={start, stop, set flip, set flop}. Then the
input event sequence is given by eu(j)=(t u(j),u(j)),

where u(j)∈U and tu(j) is any ordered time instant
sequence.

The output event facts belong to the finite set
Y={ flip,flop}.

The state event list is always composed by only
one event σx={ (tx,ξ)}, being ξ∈Y.

The system clock time tc increases as the true

time t, being: tc
.
 (t) = 1. At the time t for which the

logic expression  tc(t)=tx is true the output event
ey=(t,y=ξ) is produced and the state event list is up-
dated according to the following transition table:

When an input event occurs, the state event is
updated according to the following transition table: 

5      Hybrid Systems
Hybrid systems are composed by a discrete-

event dynamic sub-system and a continuous-time
dynamic sub-system mutually interacting.

The continuous-time sub-system is described by
the usual input u(t), state x(t), output y(t) variables

State event
(tx(t),ξ(t))

at time t for which
tc(t)=tx

State event (tx(t+),ξ(t+))
at time t+ 

(tx(t)=tc , ξ(t)=flip) (tx(t+)=tc+T , ξ(t+)=flop)

(tx(t)=tc , ξ(t)=flop) (tx(t+)=tc+T , ξ(t+)=flip)

Input event (tu,u) State event (tx(tu+),ξ(tu+))
at time t+ 

(tu , start ) (tx(tu+)=tu+ , ξ(tu+) = ξ(tu))

(tu , stop ) (tx(tu+)=∞ , ξ(tu+) = ξ(tu))

(tu , set flip ) (tx(tu+)=tu+ , ξ(tu+) = flip)

(tu , set flop ) (tx(tu+)=tu+ , ξ(tu+) = flop)



among which the classic relations hold:
x
.
(t) = F(x(t), u(t), t) (7)

y(t) = G(x(t), t) (8)

The discrete-event sub-system is described by
the input event sequence eu(j)=(t u(j),u(j)), the out-
put event sequence ey(i)=(t y(i),y(i)) and the state
event list σx(t)={ex(k)=(tx(k),ξ(k))} k∈[1,m]. 

The real state variable tc, which represents the
clock time in discrete-event dynamic systems, is
substituted in hybrid systems by the more general
continuous-time dynamic sub-system described by
Eq.s (7,8). Similarly, the logic expression (3) is
now substituted by a more general one:

L(x(t), ex(k), t) = true (9)

The above logic expression involves the state
x(t) of the continuous-time subsystem and the
events ex(k)=(tx(k), ξ(k)) of the state event list
σx(t). When, at time t, the logic expression (9) is
true, then the state event (t, ξ(k)) occurs, causing
the free evolution of the hybrid system as follows:

• The state event list is updated:
σx(t+) = Fσ(σx(t), ex(k), t) (10)

• The continuous-time state x(t) is updated:
x(t+) = Fx(x(t), ex(k), t) (11)

• The new i-th output event is produced:
ey(i)=(t y(i)=t, y(i)=gσ(x(t), ex(k), t)) (12)

Similarly the occurrence of an input event eu(j)
causes an updating of all the system state variables
x(t) and σx(t), as follows:

• The state event list is updated:
σx(t+) = Fuσ(σx(t), eu(j), t) (13)

• The continuous-time state x(t) is updated:
x(t+) = Fux(x(t), eu(j), t) (14)

In conclusion hybrid systems are a complex
mathematical concept defined by the set of equa-
tions from (7) to (14) together with the definition of
the input variables (continuous-time u(t) and event
sequence eu(j)), of the output variables (continuous-
time y(t) and event sequence ey(i)) and of the state
variables (continuous-time x(t) and event list σx(t)).

6      Conclusions
A new theoretical approach to modelling both
discrete-event dynamic systems and hybrid systems
has been presented, which is consistent with the
classical definition of dynamic systems. Such a new
approach has been applied and appears well suited
to model discrete manufacturing processes with the
aim of real time control design.
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