
2SWLPL]DWLRQ�RI�$XWRPDWLFDOO\�*HQHUDWHG�3DUDOOHO�3URJUDPV

ALESSANDRO MARONGIU1 and PAOLO PALAZZARI2

1Department of Electronic Engineering
University "La Sapienza" of Rome
Via Eudossiana 18 - 00184 ROME

ITALY

2HPCN Project
ENEA - C.R. Casaccia

Via Anguillarese 301, S.P.100, 00060 Santa Maria di Galeria (ROME)
ITALY

$EVWUDFW����The automatic synthesis of parallel programs, starting from high level specifications of an
iterative algorithm, requires a space time transformation assigning to each statement the time when and
the processor where it is executed. Time space transformations are based on not singular matrices. An
additional restriction on these matrices, unimodularity, ensures a simpler code generation and avoids
run time overhead due to control code. In this paper we show that unimodular matrices are equivalent
to not-unimodular ones in the parallelism extraction and we give an optimization method which,
exploring the space of unimodular matrices, find a (near) optimal space time transformation for a
program expressed through a System of Affine Recurrence Equations (SARE)�

.H\�:RUGV�� ��Automatic Parallelization,�polytope model, SARE, Simulated Annealing, Unimodular
matrices. IMACS/IEEE CSCC'99 Proceedings, Pages:2141-2146

�� ,QWURGXFWLRQ
In recent years the automatic synthesis of
parallel programs from iterative algorithms has
received considerable attention. A lot of
parallelization techniques have been developed
which, starting from an high level description of
an iterative algorithm, generate parallel versions
of the original program (see [1] and [2] for an
extensive bibliography). Almost all these
synthesis techniques are based on the polytope
model [3],[4]. In this model the iteration space
is represented through a bounded convex subset
of the integer lattice =1 (i.e. a polytope) and the
dependencies between statements are
represented through dependencies vectors. The
parallelization is then attained by a couple of
affine transformation functions [1]:
− the WLPLQJ�IXQFWLRQ, which gives information

about the time execution of a statement;
− the DOORFDWLRQ� IXQFWLRQ, which gives

information about the processor that will
execute a statement.

Timing and allocation function form the space-
time transformation which is characterized by
an integer and not singular matrix. A further

restriction, unimodularity [5] [8] [11], may be
applied to the trasformation matrix. This
property, although considered not essential,
allows a simpler code generation and a smaller
control run time overhead (which is high
desiderable) [6]. However using unimodular
matrices has two main disadvantages:
− the set of applicable space-time

transformations is restricted;
− the generation of an unimodular matrix is

more difficult because more constraints have
to be considered.

In this paper we will:
− show that the unimodularity constraint does

not affect the parallelism extracted from an
algorithm being unimodular and not
unimodular matrices equivalent in
parallelism extraction.

− give a method to build a space-time
transformation using unimodular matrices;

− give a method to explore the space of the
unimodular admissible matrices allowing the
searching for the (near) optimal space-time
transformation.

Throughout the paper we will assume the
theoretical framework presented in [1].

�� $OJRULWKP�0RGHO
We briefly introduce the iterative algorithm
model described through SARE (System of
Affine Recurrence Equations). More detailed
information can be found in [1], [14]. A SARE
is described by a certain number of equations (:

 ;(z)=I(...,<[ρ(z)],...) with z∈,
(

(1)

where:
− ; and < are multi-dimensional array.
− z≡(L M ... N)7 is the 1×1 iteration vector. It

represents the set of indices of ;: ;(z) means
;[L,M,...N]. Moreover z represents the
statement 6

;

(z) which computes ;(z);
− ,

(

 is the iteration space related to (1). ,
(

 is a
convex subset of =1 (i.e. a polytope). The
convex union of all ,

(

 related to all equations
forms the global iteration space polytope ,.

− ρ(z) is an affine index mapping function. It
defines a flow dependence between the
points ρ(z) and z (computation of ;(z)
requires <[ρ(z)]). In the SARE model ρ(z) is
affine, i.e. ρ:=1→=1¶≡5z+U� being 5 an 1×1
matrix and U an 1×1 vector.

− I is a function used to compute ;(z).
The main advantage of SARE model is that
analysis of algorithm dependencies, along with
extraction of parallelism and mapping
optimization (memory and scheduling), can be
done automatically at compile time. Such an
analysis is performed through dependence
vectors defined as

 G
<,ρ(z)=z-ρ(z) (2)

�� 6SDFH�7LPH�7UDQVIRUPDWLRQ
Parallelization of a SARE implies a space-time
transformation which, for each point z∈,⊂=1,
gives the time and the processor where the
corresponding statement will be executed. The
space-time transformation is composed by [1]
− the timing function τ(z), which returns when

each statement 6
;

(z) will be executed, and
− the allocation function π(z) which returns

the processor on which 6
;

(z) will be
executed.

These two functions must be:
− DGPLVVLEOH: they must guarantee the

semantics of the algorithm maintaining
dependence relations, and

− FRPSDWLEOH: no more than one statement
can be executed on a processor at the same
time.

 Timing function is chosen in the set of Q-
dimensional affine functions [1]:

 τ(z)≡Λz+α (3)

 where Λ (WLPLQJ� PDWUL[) is an integer Q×1
matrix and α is an integer Q×1 vector. τ(z)
assigns to every statement 6

;

(z) ∀z∈, a value
τ(z)∈=Q which gives the time scheduling of
6
;

(z). In order to determine univocally the time
allocation of a given 6

;

(z), values τ(z) have to
be totally ordered. We define the
lexicographical ordering on τ(z) values: given
two Q×1 vectors x and y, they are (strictly)
lexicographically ordered x<<y (x<<y) if exists
a N so that x(L) = y(L) for 0 ≤ L ≤ N�Q and
x(N+1) ≤ y(N+1) (x(N+1) < y(N+1)). N is the
ordering depth.
 When τ(z) assigns the same value to several
points z∈,, the corresponding statements will be
executed simultaneously. In [1] is shown that
the set of points with a same τ(z) value belong
to a WLPLQJ� VXUIDFH 76 defined as
76={z∈,|τ(z)=τ0}.
 76 are P-dimensional sets generated by the
kernel of matrix Λ, .HU(Λ). Given τ(z), P is the
degree of parallelism extracted by τ(z) from the
algorithm. Two timing functions Λ1 and Λ2

extract the same parallelism if they have the
same timing surfaces, i.e. if .HU(Λ1) ≡�.HU(Λ2);
in such a case the number of concurrent
operations for the two timing function is the
same.
In order to guarantee admissibility, ΛG

<,ρ(z)>>0
must be verified for each dependence vector [1].
Allocation function π(z) returns information
about processor executing 6

;

(z). Given an Q-
dimensional timing function, statements to be
executed concurrently, i.e. on different
processors, belong to an P-dimensional set; so
we choose as multiprocessor architecture a set
of processors placed on an P-dimensional grid.
Each processor is uniquely identified by a set of
coordinates (p1 p2 ... pP

)7 so, given a point z∈,,
π(z) returns the coordinates of the processor
executing 6

;

(z). π(z) is chosen in the set of P-
dimensional affine functions:

 π(z)≡Σz+β (4)

where Σ (DOORFDWLRQ�PDWUL[) is an integer P×1
matrix and β is an integer P×1 vector. In [1] is
shown that the set of points projected onto a
given processor are found through the kernel of
matrix Σ .HU(Σ).
By composing τ(z) and π(z) we have the space-

time transformation T(z) [1]:

 T(z) =

β
α+

Σ
Λ=

π
τ] = 7z + γ (5)

where 7�=
Λ
Σ

 and γ =

β
α

 Compatibility of transformation is assured if
matrix 7 is not singular [6].
The new set of coordinates (τ π)7 introduced by
T(z) gives when and where a statement 6

;

(z) is
executed. Because T(z):z→(τ π)7, we have
6
;

(z)→6
;

(τ,π), i.e. the statement 6
;

(z) is
executed on processor with coordinates π and
scheduled at geometrical time τ. The space-time
coordinate system also distributes variables
among processors. Because T(z):z→(τ π)7 ,we
have ;(z)→;(τ,π), i.e. variable ;(z) is stored in
the local memory of processor π and addressed
through vector τ: ;(τ).
The set of statements to execute on a given
processor π is generated through the nesting of Q
sequential loops [3] [4].
In the space-time coordinates system
dependence vectors are transformed too
according as in the following:

 G
7,<,ρ(z) 7G<,ρ(z) (ΛG

<,ρ(z),ΣG<,ρ(z))=(Gτ,Gπ) (6)

where Gτ is a Q×1 vector and Gπ is a P×1 vector.
It is easy to see that Gτ is lexicographical
positive due to the admissibility condition.
While in the original space a dependence vector
G defines a flow dependence between points
ρ(z)=z0 and z0+G, in the transformed space it
defines a couple of dependencies on time
components and processor components. In fact,
given T(z):z→(τ π)7, we have z0 → (τ0 π0)

7 and
z0 + G → (τ0 π0)

7 + (Gτ Gπ)
7 = (τ0 + Gτ π0 + Gπ)

7.
Communications are generated by the processor
part of the dependence vector. If Gπ is not null,
operand required by statement
6
;

(τ0 + Gτ,π0 + Gπ), computed in processor
π0 + G

S

, is stored in the processor π0. So
communications have to be executed in order to
transfer operands from storage processor π0 to
computing processor π0 + Gπ. If Gπ is null, no
communication is performed because statement
and operand are in the same processor. Being
SARE a single assignment computational
model, it has the effect to produce a great waste
of memory due to the impossibility to reuse
memory locations containing values not more
used. Automatic memory optimization can be
performed by analyzing the time part of the
transformed dependence vector as shown in [1]

and [7].
Completion time, communications to be
performed and memory requirements of the
generated parallel program depend on the matrix
7 of transformation function.

�� &KRRVLQJ�0DWUL[�7
 If matrix 7 is chosen as a generic integer not
singular matrix, T(z) projects original iteration
space ,, defined on the =1 lattice, onto a target
iteration space ,

7

 defined on a lattice / which
generally differs from =1 [8]. Dealing with /
causes run time overhead because extra code
must be inserted to handle transformed loop
indices [6] and to avoid the memory wasting
caused by a not dense iteration space. On the
contrary, if 7 is an unimodular not singular, T(z)
projects iteration space , onto the target iteration
space ,

7

 which are defined on the same lattice
=1 avoiding the before mentioned run time
overhead causes.

Moreover the using of a not unimodular matrix
7 enlarges the set of space time transformation
but this enlargement is useless. In fact, through
the Hermite Normal Form (HNF) [8], we can
write 7=+7

8

 where
− + is a non singular lower triangular matrix

with positive diagonal elements
− 7

8

 is an unimodular matrix.
Matrix 7 and 7

8

 are equivalent as explained in
the following
7KHRUHP�� *LYHQ� D� PDWUL[� 7� DQG� WKH
FRUUHVSRQGLQJ�PDWUL[�7

8

�GHILQHG�IURP�WKH�+1)
ZH�KDYH�WKDW�
1. WKH\�H[WUDFW�WKH�VDPH�SDUDOOHOLVP�
2. WKH\�KDYH�WKH�VDPH�DGPLVVLELOLW\�SURSHUWLHV�
Proof
Being 7 the composition of a timing and an
allocation matrix, we rewrite the HNF as:

 7=

Σ
Λ =

Σ
Λ

8

8

++
+

����

��
�

(7)

where 7
8

=

Σ
Λ
8

8 , +11 (+22) is an Q×Q (P×P)

lower triangular not singular matrix with
positive diagonal elements and +21 is an P×Q
matrix.
From (7) we have:

 Λ=+
��

Λ
8

(8)

 Σ=+
��

Λ
8

 + +
��

Σ
8

(9)

Being the degree of parallelism individuated by

the .HU(Λ), we show that .HU(Λ)≡.HU(Λ
8

).
On the basis of kernel definition, ΛN=0
∀N∈.HU(Λ). From expression (8) we have
ΛN=+

��

Λ
8

N=0 ∀N∈.HU(Λ). As +
��

 is not
singular, +

��

Λ
8

N=0 ⇔ Λ
8

N=0 ∀N∈.HU(Λ). So
ΛN=0 ⇔ Λ

8

N=0 ∀N∈.HU(Λ) and hence
.HU(Λ)≡.HU(Λ

8

).
Given a dependence vector G, on the basis of
admissibility condition Gτ=ΛG>>0 with a
lexicographical ordering depth N. We show that
ΛG>>0 ⇔ Λ

8

G>>0.
From (8) Gτ�= ΛG�= +

��

Λ
8

G�= +
��

Gτ�8�>> 0 where
Gτ�8�= Λ

8

G. Being +
��

 lower triangular with
positive diagonal elements and Gτ(1)=Gτ(1)=...=
Gτ(N)=0 and Gτ(N+1)>0, we have:

Gτ(1)=+11(1,1)Gτ�8(1)=0 ⇒ Gτ�8(1)=0;

Gτ(2)=+11(2,1)Gτ�8(1)++11(2,2)Gτ�8(2)=0
⇒ Gτ�8(2)=0;
...

Gτ(N)=+11(N,1)Gτ�8(1)++11(N,2)Gτ�8(2)+...+
++11(N,N)Gτ�8(N)=0 ⇒ Gτ�8(N)=0;

Gτ(N+1)=+11(N+1,1)Gτ�8(1)++11(N+1,2)Gτ�8(2)+..+
++11(N+1,N)Gτ�8(N)++11(N+1,N+1)Gτ�8(N+1)>0
⇒ Gτ�8(N+1)>0;

So the admissibility is preserved.
7�and 7

8

 generally induce different mapping on
processor space because, due to (9), Σ and Σ

8

may generate different kernel:
.HU(Σ) ≠ .HU(Σ

8

). From (9) it is easy to prove
that 7� and 7

8

 generate the same mapping
(.HU(Σ) = .HU(Σ

8

)) on processor space if +21=0.
In fact we have: ΣN�= 0 ∀N∈.HU(Σ). From
expression (9), if +21=0, we have ΣN=+

��

Σ
8

N=0
∀N∈.HU(Σ). As +

��

 is not singular, +
��

Σ
8

N=0 ⇔
Σ
8

N=0 ∀N∈.HU(Σ). So ΣN=0 ⇔ Σ
8

N=0
∀N∈.HU(Σ) and hence .HU(Σ)≡.HU(Σ

8

).

�� 8QLPRGXODU�$GPLVVLEOH�0DWULFHV
Hermite developed an algorithm [11] to
generate an 1×1 unimodular matrix from:
− an (1-1)×(1-1) unimodular matrix 0

1-1;
− 1 integer numbers W1,1, W1,2, ..., W1,1 with

Greatest Common Divisor (GCD)
GCD(W1,1, W1,2, ..., W1,1)=1. These numbers will
be the first row of the unimodular matrix.

Furthermore Hermite demonstrated that the
space of unimodular matrices is closed with
respect to his algorithm: all unimodular
matrices can be built with this algorithm.
As particular case of Hermite algorithm, we

report the following procedure to build up an
unimodular matrix.
3URFHGXUH�BuildUnimodular(

input: [integer 1-vector with GCD([)=1
output: 7 1×1 unimodular integer matrix)

EHJLQ
IRU N:=1 WR 1 GR 7(1,N)=[(N)
compute D1, D2 and π1, being

D1W1,1-D2W1,2=π1= GCD(W1,1,W1,2)
7(2,1):=D1

7(2,2):=D2

IRU N:=3 WR 1 GR 7(2,N)=0
IRU L:=3 WR 1 GR

compute E
L-2, DL and π

L��

, being
E
L-27(1,L) -�D

L

π
L-2 = π

L���

= GCD(7(1�L),π
L-2)

IRU N:=1 WR L-1 GR�7(L,N)=E
L�2(7(1,N)

�

�π
L�2)

7(L,L): D
L

IRU N:=L+1 WR 1 GR 7(L,N):=0
HQG�IRU�(L)

HQG.
The extended Euclid’s algorithm [12] can be
used to compute integer values D, E, F in the
integer expression D[+E\�= F�= GCD([,\).
Given two unimodular 1×1 matrices 71 and 72,
we can always transform 71 into 72 through a
sequence of the following u-elementary
transformations [11]:
− exchange two rows (columns);
− multiply a row (column) by -1;
− sum of row (column) L to row (column) M≠L;
− transpose.
In order to generate admissible transformation
matrices 7, we demonstrate the following
7KHRUHP: JLYHQ�D� VHW� RI� GHSHQGHQFH� YHFWRUV� G

L

�L ����«�N��� ZH� VROYH�� LQ� WKH� [� XQNQRZQ�� WKH
V\VWHP� [G

L

≥1�� 7KH� PDWUL[� 7� REWDLQHG� IURP
SURFHGXUH�BuildUnimodular([�7)�LV�DGPLVVLEOH�
Proof: the first component of 7G

L�

is positive (≥1)
for each G

L

, so surely ΛG
L

>>0 and hence the
transformation is admissible.
The system [G

L

≥1 can be solved through the
Polyhedral Library [15].

�� 2SWLPL]DWLRQ�RI�WKH�0DSSLQJ
Starting from an admissible unimodular matrix,
through the u-elementary transformations we
are able to explore the space of all the
unimodular matrices. In order to optimize the
mapping with respect to memory usage and
completion time, we must associate a cost to a
given mapping matrix 7 and give an algorithm
to explore the mapping matrix space.

We use the Simulated Annealing (SA) [9]
algorithm to optimize the mapping. As required
by SA, we introduce the New(7) function which

returns a new admissible matrix 7�’=

Σ
Λ

’

’

adjacent (i.e. derived through anyone of the u-
elementary operations) to 7. The structure of
New is the following:
SURFHGXUH�New(

input: 7, G
L

 (dependence vectors)
output 7�’)

EHJLQ
UHSHDW

random select an u-elementary operation;
7�’:=u-elementary transformation of 7;

XQWLO Λ’G
L

>>0 ∀L;
HQG.
We underline that New procedure always exits
because at least one of the u-elementary
transformations ensures the maintaining of
admissibility. In fact it is easy to verify that
matrix 7�’ is admissible if it is obtained from an
admissible 7 by adding the first row to any other
row. Indicating with EvaluateCost(7) the
function associating to 7 its cost, the SA
algorithm can be written as in the following
SURFHGXUH�SA(

input: G
L

 (dependence vectors)
output 7 matrix with the minimal cost)

%HJLQ
[:=solution of system of inequalities [G

L

≥1 [15]
determine the cooling schedule

(W0,U,N, IUR]HQ condition) as in [10];
W:=W0
7=BuildUnimodular([)
cost:=EvaluateCost(7);
ZKLOH not IUR]HQ
 IRU L:=1 WR N GR

New(7,G
L

,7�’);
costnew=EvaluateCost(7�’);
accept=0,
if (costnew<cost) accept=1;
else if exp((cost-costnew)/t)>p accept=1;
if accept=1 7=7�’; cost=costnew;

HQG�IRU
W:=U* W;

HQG�ZKLOH
HQG
The cost returned by the EvaluateCost(T)
function must take into account both the
execution time and the memory required by the
parallelized program. We have chosen the
following expression:

() ()��PLQ��PLQ
FRVW

N0HP
0HP

Z
N7

7
Z

P

H[H

H[H

V
+=

where
− Z

6

 and Z
0

 are weighting coefficients,
− 7

H[H

 is the (estimated) execution time
expressed as weighted sum of the
computation time and communication time
required by the parallelized algorithm.

− PLQ�7
H[H

�N�� and PLQ�0HP�N�� are the
minimum values of completion time and
memory requirements found until
optimization step N, i.e. they are the actual
minimum values which are updated
whenever a new minimum is found.

Notice that PLQ�7
H[H

�N�� and PLQ�0HP�N�� may
not correspond to the same projection. The cost
function varies during the first phase of the
optimization process, but it ‘freezes’ as the
optimization process goes on.
Coefficients Z

6

 and Z
0

 are used to balance the
relative weight of execution time and memory
allocation: they can be used to move the search
from mappings very efficient in time (but with
high memory requirements) to mappings which
need few memory space (but spend much time
in computations). Usually we adopt Z

6

 and Z
0

values which give and intermediate behavior,
i.e. which achieve a trade off between
efficiency in time and in memory. The lower
bound for the cost function is Z

6�

+�Z
0

.
A typical optimization through the presented
SA algorithm requires about 5 minutes on a
Pentium II based machine.

�� 5HVXOWV
Using a parallelizing tool developed by us on
the basis of [1], we successfully implemented
our optimization technique to automatically
generate parallel codes for the APE100
Quadrics SIMD machine [13] (we used the
configuration with 128 processing nodes).
In order to show the experimental results of the
optimization technique we use the SARE
expression of block matrix-matrix multiplication
as test example. Given a two matrices A and B
represented through T×T blocks of U×U elements,
the generic elements of matrix A and B is
A(L,M,LL,MM) and B(L,M,LL,MM) where L and M indicate
the block and LL and MM indicate the element
within the block. The product C=AB is
expressed through the six-dimensional SARE:
− C(L,M,N,LL,MM,NN)=0

for 1≤L≤T,1≤M≤T,N=1,1≤LL≤U,1≤MM≤U, NN=0

− C(L,M,N,LL,MM,NN)=0
for 1≤L≤T,1≤M≤T,N=0,1≤LL≤U,1≤MM≤U NN=U+1

− C(L,M,N,LL,MM,NN)=C(L,M,N,LL,MM,NN-1)+
+A(L,N,LL,NN)B(N,M,NN,MM)
for 1≤L≤T,1≤M≤T,1≤N≤T,1≤LL≤U,1≤MM≤U,1≤NN≤U

− C(L,M,N,LL,MM,NN)=C(L,M,N-1,LL,MM,NN)+
+C(L,M,N,LL,MM,NN-1)
for 1≤L≤T,1≤M≤T,1≤N≤T,1≤LL≤U,1≤MM≤U,NN=U+1

− output C(L,M,N,LL,MM,NN)
for 1≤L≤T,1≤M≤T,N=T,1≤LL≤U,1≤MM≤U,NN=U+1

In Fig. 1 we report in abscissa the value of the
cost function obtained during the optimization
process with Z

6

=2 and Z
0

=0.1 (we put more
emphasis on execution time) for the parallelized
matrix multiplication SARE example: the solid
line represents the true execution time on the
parallel machine versus the cost function, while
the dotted line represents the memory
requirement per processor versus the cost
function. For our test example we achieve an
execution time of 164 ms and a memory
allocation of 21952 word/processor.

164

21952
0

200

400

600

800

1000

1200

0 5 10 15 20

Cost Function

E
xe

cu
tio

n
T

im
e

(m
s)

0

50000

100000

150000

200000

250000

300000

M
em

or
y

(W
or

d)

Execution Time Memory

Fig. 1
In Fig. 2 we show the optimization process with
Z

6

=1 and Z
0

=0.1 (we put less emphasis on time
than the previous optimization process): again
the solid line represents the true execution time
on the parallel machine versus the cost function,
while the dotted line represents the memory
requirement per processor vs the cost function.

257
35360

500

1000

1500

2000

2500

0 2 4 6 8 10 12 14

Cost Function

E
xe

cu
tio

n
T

im
e

(m
s)

0

50000

100000

150000

200000

250000

M
em

or
y

(W
or

d)

Execution Time Memory

 Fig. 2
Because of the less emphasis on time, we
expect to have a bigger execution time but with
more contained memory requirements. In fact
in this case we achieve an execution time of
257 ms with a memory allocation of 3536
word/processor.

In a similar manner the optimization process for
memory minimization (Z

6

=1 and Z
0

=20) lead
to a memory allocation of 2820 word/processor
but with an execution time of 1015 ms.

5HIHUHQFHV�
[1] Marongiu A., Palazzari P.,"A New Memory
Saving Technique to Map System of Affine
Recurrence Equations (SARE) onto Distributed
Memory Systems", 3URF�� RI� ��WK� ,336, Apr.
1999 Puerto Rico.
[2] Zimmermann K.H., "Linear Mapping of Q-
dimensional Uniform Recurrences onto N-
dimensional Systolic Arrays", -RXUQDO� RI� 9/6,
6LJQDO�3URFHVVLQJ, No.12, 1996, pp.187-202.
[3] Feautrier P., “Automatic Parallelization in
the Polytope Model”,�/HV�0HQXLUHV, Vol. LNCS
1132, 1996, pp. 79-100.
[4] Lengauer C., “Loop Parallelization in the
Polytope Model”, &21&85, Vol. LNCS 715,
1993, pp. 398-416.
[5] Dowling M. L., "Optimal code
parallelization using unimodular
transformations", 3DUDOOHO� &RPSXWLQJ, 16,
1990, pp. 157-171.
[6] Li W., Pingali K., "A Singular Loop
Transformation Framework Based on Non-
Singular Matrices", 3URFHHGLQJV� RI�)LIWK
:RUNVKRS� RI� /DQJXDJHV� DQG� &RPSLOHUV� IRU
3DUDOOHO�&RPSXWLQJ, 1992, pp. 391-405.
[7] Lefebvre V., Feautrier P., "Automatic
Storage Management for Parallel Programs",
3DUDOOHO�&RPSXWLQJ, Vol. 24, 1998, pp.649-671.
[8] Schrijver A., 7KHRU\�RI�/LQHDU�DQG�,QWHJHU
3URJUDPPLQJ, John Wiley and Sons, 1986.
[9] Kirkpatrick S., Gelatt C.D., Vecchi M.P.,
"Optimization by Simulated Annealing",
6FLHQFH, Vol. 220, N. 4589, 1983.
[10] Deckers A., Aarts E., "Global
Optimization and Simulated Annealing",
0DWKHPDWLFDO�3URJUDPPLQJ, Vol. 50, 1991.
[11] MacDufee,C.C. 7KH� 7KHRU\� 0DWULFHV
Springer 1933.
[12] Knuth D., 7KH

�

$UW� RI� &RPSXWHU
3URJUDPPLQJ, Addison Wesley, 1969, pp. 302-4
[13] Bartoloni et al, "A Hardware
implementation of the APE100 architecture",
,QW��-RXUQDO�RI�0RGHUQ�3K\VLFV, C4, 1993.
[14] Moneget C., Clauss P., Perrin G.R.,
"Geometrical Tools to Map System of Affine
Recurrence Equations on Regular Arrays", $FWD
,QIRUPDWLFD, Vol. 31, No.2, 1994, pp. 137-160.
[15] Wilde D.K., "A Library for Doing
Polyhedral Operations", ,5,6$� �� ,QWHUQDO
5HSRUW, No. 785, 1993.

