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Abstract: - The automatic synthesis of parallel programs, starting from high level specifications of an
iterative algorithm, requires a space time transformation assigning to each statement the time when and
the processor where it is executed. Time space transformations are based on not singular matrices. An
additional restriction on these matrices, unimodularity, ensures a simpler code generation and avoids
run time overhead due to control code. In this paper we show that unimodular matrices are equival ent
to not-unimodular ones in the parallelism extraction and we give an optimization method which,
exploring the space of unimodular matrices, find a (near) optimal space time transformation for a
program expressed through a System of Affine Recurrence Equations (SARE).
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1 Introduction

In recent years the automatic synthesis of

paralel programs from iterative algorithms has

receilved considerable attention. A lot of
paralelization techniques have been developed
which, starting from an high level description of
an iterative algorithm, generate parallel versions
of the origina program (see [1] and [2] for an
extensive bibliography). Almost al these
synthesis techniques are based on the polytope
model [3],[4]. In this model the iteration space
is represented through a bounded convex subset
of the integer lattice Z" (i.e. a polytope) and the
dependencies  between  datements  are
represented through dependencies vectors. The
pardlelization is then attained by a couple of

affine transformation functions [1]:

— the timing function, which gives information
about the time execution of a statement;

- the allocation function, which gives
information about the processor that will
execute a statement.

Timing and alocation function form the space-

time transformation which is characterized by

an integer and not singular matrix. A further

restriction, unimodularity [5] [8] [11], may be
applied to the trasformation matrix. This
property, although considered not essential,
allows a simpler code generation and a smaller
control run time overhead (which is high
desiderable) [6]. However using unimodular
matrices has two main disadvantages:

- the st of applicable spacetime
transformationsis restricted;

— the generation of an unimodular matrix is
more difficult because more constraints have
to be considered.

In this paper we will:

— show that the unimodularity constraint does
not affect the paralldism extracted from an
algorithm being unimodular and not
unimodular ~ matrices  equivalent  in
parallelism extraction.

— give a method to build a spacetime
transformation using unimodul ar matrices;

— give a method to explore the space of the
unimodular admissible matrices alowing the
searching for the (near) optimal space-time
transformation.

Throughout the paper we will assume the

theoretical framework presented in [1].



2 Algorithm Model

We briefly introduce the iterative algorithm
model described through SARE (System of
Affine Recurrence Equations). More detailed
information can be found in [1], [14]. A SARE
is described by a certain number of equations £:

X(2=A....Y[p(2)],...) with zOIZ; Q)
where:

— Xand Y are multi-dimensiona array.

- z=(ij .. k)" is the Nx1 iteration vector. It
represents the set of indices of X: X(z) means
Xliyj,...k]. Moreover z represents the
statement S(z) which computes X(2);

— I isthe iteration space related to (1). I isa
convex subset of Z" (i.e. a polytope). The
convex union of all I; related to all equations
forms the global iteration space polytope I.

- p(2) is an affine index mapping function. It
defines a flow dependence between the
points p(z) and z (computation of X(2)
requires Y[p(2)]). In the SARE model p(z) is
affine, i.e. p:Z" - Z"=Rz+r, being R an NxN
matrix and » an Nx1 vector.

- fisafunction used to compute X(2).
The main advantage of SARE mode is that
analysis of algorithm dependencies, along with
extraction of paralelism and mapping
optimization (memory and scheduling), can be
done automatically at compile time. Such an
analysis is performed through dependence
vectors defined as

dy p=2-p(2) 2

3 Space Time Transformation

Parallelization of a SARE implies a space-time

transformation which, for each point zO/0Z",

gives the time and the processor where the
corresponding statement will be executed. The

space-time transformation is composed by [1]

— thetiming function 1(2), which returns when
each statement Sy(z) will be executed, and

— the dlocation function 1(z) which returns
the processor on which Sy(z) will be
executed.

These two functions must be:

— admissible: they must guarantee the
semantics of the algorithm maintaining
dependence relations, and

— compatible: no more than one statement
can be executed on a processor at the same
time.

Timing function is chosen in the set of n-
dimensiond affine functions [1]:

1(2=N\z+a 3
where A (timing matrix) is an integer nxN
matrix and a is an integer nx1 vector. 1(2)
assigns to every statement Sy(z) Ozl a value
1(20Z" which gives the time scheduling of
S¥(2). In order to determine univocally the time
alocation of a given Sy(z), values 1(z) have to
be totaly ordered. We define the
lexicographical ordering on 1(z) values: given
two nx1 vectors X and y, they are (strictly)
lexicographicaly ordered x<<y (x<<vy) if exists
a k so that x(i)=y() for 0<i<k<m and
X(k+1) < y(k+1) (X(k+1) <y(k+1)). k is the
ordering depth.

When 1(z) assigns the same value to several
points z[1/, the corresponding statements will be
executed simultaneously. In [1] is shown that
the set of points with a same 1(z) value belong
to a tming surface TS defined as
TS={z0I[t(2)=1¢} .

TS are m-dimensional sets generated by the
kernel of matrix A, Ker(N\). Given 1(2), m is the
degree of paralleism extracted by 1(z) from the
agorithm. Two timing functions A; and A,
extract the same parallelism if they have the
same timing surfaces, i.e. if Ker(/\;) = Ker(/\,);
in such a case the number of concurrent
operations for the two timing function is the
same.

In order to guarantee admissibility, Adyp;>>0
must be verified for each dependence vector [1].
Allocation function 1(z) returns information
about processor executing Sy(z). Given an n-
dimensiond timing function, statements to be
executed concurrently, i.e. on different
processors, belong to an m-dimensional set; so
we choose as multiprocessor architecture a set
of processors placed on an m-dimensional grid.
Each processor is uniquely identified by a set of
coordinates (p; Pz ... P»)’ SO, given a point z[1,
1(2) returns the coordinates of the processor
executing Sy(z). 1(2) is chosen in the set of m-
dimensiond affine functions:

T(2)=2z+( 4)
where X (allocation matrix) is an integer mxN
matrix and (3 is an integer mx1 vector. In [1] is
shown that the set of points projected onto a
given processor are found through the kerndl of
matrix X Ker(Z).

By composing 1(z) and 11(z) we have the space-



time transformation T(z) [1]:

to-GHEE-HRre o

where 7' = ﬁ;ﬁandyz @ﬁ

Compatibility of transformation is assured if
matrix T'is not singular [6].

The new set of coordinates (T 1)’ introduced by
T(2) gives when and where a statement Sy(2) is
executed. Because T(2):z—(tm)’, we have
Su2) - S(t,m), i.e. the datement S{z) is
executed on processor with coordinates 11 and
scheduled at geometrical time 1. The space-time
coordinate system also distributes variables
among processors. Because T(2):z— (t )’ ,we
have X(2) - X(1,1), i.e. variable X(2) is stored in
the local memory of processor 1T and addressed
through vector t: X(1).

The set of statements to execute on a given
processor TTis generated through the nesting of »
sequential loops[3] [4].

In the gspacetime coordinates system
dependence vectors are transformed too
according asin the following:

dryp0 =Tdy,o0=(Ndy o Zdy p2)=(drdr) (6)
where d; isanx1 vector and d,is amx1 vector.
It is easy to see that d; is lexicographical
positive due to the admissibility condition.
While in the original space a dependence vector
d defines a flow dependence between points
p(2)=zo and zytd, in the transformed space it
defines a couple of dependencies on time
components and processor components. In fact,
given T(2):z—(t )’, we have zo - (T, T)" and
Zo+d —» (o) + (drdy)' = (To+d; To+dy)'.
Communications are generated by the processor
part of the dependence vector. If d,is not null,

operand required by statement
Sy(To + dnTo+d,), computed in processor

Th+d, is stored in the processor T, SO
communications have to be executed in order to
transfer operands from storage processor Tf to
computing processor T + d If dy; is null, no
communication is performed because statement
and operand are in the same processor. Being
SARE a single assignment computational
model, it has the effect to produce a great waste
of memory due to the impossibility to reuse
memory locations containing values not more
used. Automatic memory optimization can be
performed by analyzing the time part of the
transformed dependence vector as shown in [1]

and [7].

Completion time, communications to be
performed and memory requirements of the
generated paralel program depend on the matrix
T of transformation function.

4 Choosing Matrix T

If matrix T is chosen as a generic integer not
singular matrix, T(z) projects original iteration
space I, defined on the Z" lattice, onto a target
iteration space I, defined on a lattice L which
generally differs from Z" [8]. Dealing with L
causes run time overhead because extra code
must be inserted to handle transformed loop
indices [6] and to avoid the memory wasting
caused by a not dense iteration space. On the
contrary, if Tisan unimodular not singular, T(2)
projects iteration space I onto the target iteration
space Ir which are defined on the same lattice
7" avoiding the before mentioned run time
overhead causes.

Moreover the using of a not unimodular matrix

T enlarges the set of space time transformation

but this enlargement is useless. In fact, through

the Hermite Normal Form (HNF) [8], we can

write T=HT,;, where

— Hisanon singular lower triangular matrix
with positive diagonal elements

— Tyisanunimodular matrix.

Matrix T and T, are equivalent as explained in

the following

Theorem: Given a matrix T and the

corresponding matrix Ty defined from the HNF

we have that:

1. they extract the same parallelism;

2. they have the same admissibility properties.

Proof

Being T the composition of a timing and an

allocation matrix, we rewrite the HNF as:

FEEG L EEd o

where Tifzgf' @, Hy (Fhp) is an nxn (mxm)
U

lower triangular not singular matrix with
positive diagonal elements and Hy is an mxn
matrix.

From (7) we have:

/\:HII/\U (8)
2=H N\y+ HypZy 9)
Being the degree of parallelism individuated by



the Ker(/\), we show that Ker(A)=Ker(/A\y).
On the basis of kernd definition, Ak =0
OkOKer(N). From expression (8) we have
/\k:H”/\Uk:O DkDKer(/\) As Hj, is not
S.ngUIar, H[[/\Uk=O = /\Uk=0 DkDKer(/\) So
Ne=0 = Ayk=0 0Ok[OKer(\) and hence
Ker(N)=Ker(/\y).
Given a dependence vector d, on the basis of
admissibility condition d=Ad>>0 with a
lexicographical ordering depth k. We show that
Nd>>0 = N\yd>>0.
From (8) d,= N\d = H;)\yd = H;,d;;,>> 0 where
dry=/Nyd. Being H;, lower triangular with
positive diagonal elements and d(1)=d{(1)=...=
d(k)=0 and d(k+1)>0, we have:
d{(1)=Hyu(1,1)d; (1)=00 d;(1)=0;
d{(2)=H11(2,1)d; (1)+H11(2,2)d/(2)=0

O dE[/(Z):O;

dr(ls-:Hn(k,l)d,,[;(1)+H11(k,2)d,,[,(2)+...+
+Hy(kk)d;(k)=0 0 d;(k)=0;

d;—(k"'l):Hll(k"'l,l)dz;[](1)+H11(k+1,2)d7’[/(2)+..+
+Hy(k+1,k)d; (k) +Hy(k+1,k+1)d;  (k+1)>0
0 dry(k+1)>0;
So the admissihility is preserved.
T and T, generally induce different mapping on
processor space because, due to (9), ~ and %
may generate different kernel:
Ker(Z) # Ker(Zy). From (9) it is easy to prove
that 7 and T, generate the same mapping
(Ker(Z) = Ker(Z))) on processor space if H;=0.
In fact we have: k=0 OkOKer(X). From
expression (9), if H,=0, we have Zk=H,,Z k=0
OkOKer(X). As Hy, isnot singular, H»,2 k=0 -
>k=0 [OkOKer(Z). So Zk=0 e Zyk=0
OkOKer(Z) and hence Ker(Z)=Ker(Z,).

5 Unimodular Admissible Matrices
Hermite developed an adgorithm [11] to
generate an NxN unimodular matrix from:

— an (N-1)x(N-1) unimodular matrix My.s;

- N integer numbers fi1, f12, ..., iy With
Greatesss Common  Divisor (GCD)
GCD(t11, t12, .., tay)=1. These numbers will
be the first row of the unimodular matrix.

Furthermore Hermite demonstrated that the

space of unimodular matrices is closed with

respect to his algorithm: al unimodular
matrices can be built with this a gorithm.

As particular case of Hermite agorithm, we

report the following procedure to build up an
unimodular matrix.
Procedure BuildUnimodular(
input: x integer N-vector with GCD(x)=1
output: 7 NxN unimodular integer matrix)
begin
for k:=1to N do T(1,k)=x(k)
compute a4, a, and 11, being
arty 1-aot 7=Th= GCD(t1,1,11,2)
T(2,1):=Cll
T(2,2):=612
for k:=3 to N do 1(2,k)=0
for i:=3 to N do
compute b,.,, a; and 11, being
bioT(1,i) - =1, = GCD(7(1,1),T5.)
for k:=1to i-1 do 7(i,k)=b;(T(1,k) /TT.)
1(,0):=a;
for k:=i+1to N do 7(i,k):=0
end for (i)
end.
The extended Euclid’s algorithm [12] can be
used to compute integer valuesb, ¢ in the
integer expressioax+by = ¢ = GCD(,y).
Given two unimodulatvxN matrices?; and 7,
we can always transforrfi; into 7 through a
sequence of the following u-elementary
transformations [11]:
- exchange two rows (columns);
— multiply a row (column) by -1;
- sum of row (columnj to row (column)#i;
- transpose.
In order to generate admissible transformation
matrices7, we demonstrate the following
Theorem: given a set of dependence vectors d;
(i=1,2,....k), we solve, in the x unknown, the
system xd=21. The matrix T obtained from
procedure BuildUnimodular, 7) is admissible.
Proof: the first component @i/, is positive g1)
for eachd, so surelyAd>>0 and hence the
transformation is admissible.
The systemxd;21 can be solved through the
Polyhedral Library [15].

6 Optimization of the Mapping

Starting from an admissible unimodular matrix,

through the u-elementary transformations we
are able to explore the space of all the

unimodular matrices. In order to optimize the

mapping with respect to memory usage and
completion time, we must associate a cost to a
given mapping matrix” and give an algorithm

to explore the mapping matrix space.



We use the Simulated Annealing (SA) [9]
algorithm to optimize the mapping. As required
by SA, we introduce the New(7) function which

returns a new admissible matrix 7= %E

adjacent (i.e. derived through anyone of the u-

elementary operations) t@. The structure of
New is the following:
procedure New(
input: 7, d; (dependence vectors)
output?’’)
begin
repeat
random select an u-elementary operation;
T :=u-elementary transformation @t
until \’d>>00;;
end.

. Mem
(k) " min(Men(k))

exe

min (T

exe

cost =w,

where

- wg andw,, are weighting coefficients,

- T, is the (estimated) execution time

expressed as weighted sum of the

computation time and communication time

required by the parallelized algorithm.

= min(Tye(k)) and min(Mem(k)) are the
minimum values of completion time and
memory  requirements  found  until
optimization stegx, i.e. they are the actual
minimum values which are updated
whenever a new minimum is found.

Notice thatmin(T,..(k)) and min(Mem(k)) may

not correspond to the same projection. The cost

function varies during the first phase of the

We underline that New procedure always exXitsoptimization process, but it ‘freezes’ as the
because at least one of the u-elementaryptimization process goes on.

transformations ensures the maintaining ofCoefficientsws andw,, are used to balance the
admissibility. In fact it is easy to verify that relative weight of execution time and memory
matrix 7’ is admissible if it is obtained from an allocation: they can be used to move the search
admissibleT by adding the first row to any other from mappings very efficient in time (but with

row. Indicating with EvaluateCodgi( the
function associating tor' its cost, the SA
algorithm can be written as in the following
procedure SA(
input: d; (dependence vectors)
output7 matrix with the minimal cost)
Begin
x:=solutionof systenof inequalitiestd;=1 [15]
determine the cooling schedule
(to,r,k, frozen condition) as in [10];
=ty
T=BuildUnimodularf)
cost:=Evaluate Cosff;
while notfirozen
for i;=1to k do
New(T,d,T");
costnew=EvaluateCo$i();
accept=0,
if (costnew<cost) accept=1;

else if exp((cost-costnew)/t)>p accept=1;

if accept=17=T"; cost=costnew;
end for
t=r*t,
end while
end

high memory requirements) to mappings which
need few memory space (but spend much time
in computations). Usually we adopt andw,,
values which give and intermediate behavior,
i.e. which achieve a trade off between
efficiency in time and in memory. The lower
bound for the cost function s+ w,.

A typical optimization through the presented
SA algorithm requires about 5 minutes on a
Pentium Il based machine.

7 Results

Using a parallelizing tool developed by us on
the basis of [1], we successfully implemented
our optimization technique to automatically
generate parallel codes for the APE100
Quadrics SIMD machine [13] (we used the
configuration with 128 processing nodes).

In order to show the experimental results of the
optimization technigue we use the SARE
expression of block matrix-matrix multiplication
as test example. Given a two matrices A and B
represented througfxg blocks ofrxr elements,
the generic elements of matrix A and B is

The cost returned by the EvaluateCost(T)A(iJliiJj) and B{,,ii,j) wherei and; indicate

function must take into account both thene hiock andii and jj indicate the element
execution time and the memory required by thg,;iihin the block. The product C=AB is

parallelized program. We have chosen
following expression:

theaxpressed through the six-dimensional SARE:

—  Cl(iy,k,ii,jj kk)=0
for 1<i<q,1<j<q,k=1,1<ii<r,1<jj<r, kk=0



= C(ij,k,ii,jj kk)=0

for 1<i<q,1<j<q,k=0,1<ii<r,1<jj<r kk=r+1
—  C(iyj,k,iijj kk)=C(i j k,ii jj kk-1)+

+A (i, k,ii kk)B(k,j kk,jj)

for 1<i<q,1<j<q,1<k<q,1<ii<r,1<jj<r,1<kk<r
= C(ij k.iijj kk)=C(i,j k-1,ii jj kk)+

+C(i j k.ii jj kk-1)

for 1<i<q,1<j<q,1<k<q,1<ii<r,1<jj<r.kk=r+1
— output C(i,/ k,ii,jj kk)

for 1<i<q,1<j<q,k=q,1<ii<r,1<jj<rkk=r+1
In Fig. 1 we report in abscissa the value of the
cost function obtained during the optimization
process with wg=2 and w,;,=0.1 (we put more
emphasis on execution time) for the parallelized
matrix multiplication SARE example: the solid
line represents the true execution time on the
paralel machine versus the cost function, while
the dotted line represents the memory
requirement per processor versus the cost
function. For our test example we achieve an
execution time of 164 ms and a memory
allocation of 21952 word/processor.
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Fig. 1

In Fig. 2 we show the optimization process with
ws=1 and w;,=0.1 (we put less emphasis on time
than the previous optimization process): again
the solid line represents the true execution time
on the parallel machine versus the cost function,
while the dotted line represents the memory
requirement per processor vs the cost function.
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Fig. 2
Because of the less emphasis on time, we
expect to have a bigger execution time but with
more contained memory requirements. In fact
in this case we achieve an execution time of
257 ms with a memory allocation of 3536
word/processor.

In asimilar manner the optimization process for
memory minimization (ws=1 and w,,=20) lead
to a memory allocation of 2820 word/processor
but with an execution time of 1015 ms.
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