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Abstract: - A self-tuning controller based on the Takagi-Sugeno fuzzy model of the process is proposed. The
fuzzy model is represented as a linear time-varying model and the pole-placement design procedure modified for
the time-varying systems is applied to obtain the desired closed-loop poles. The stability is proven for a class of
SISO systems. Because of its simplicity, the proposed method is suitable for the on-line controller design in the
adaptive control systems. As an example, the proposed method is applied in adaptive control of a laboratory
liquid level rig. The obtained results are much better than the results obtained with the self-tuning controller
based on linear process model.                                       IMACS/IEEE  CSCC'99  Proceedings, Pages: 2161-2166
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1  Introduction
Fuzzy logic was originally introduced in process
control as a means of representing the qualitative and
uncertain knowledge about the dynamic behaviour of
the system. The representation of qualitative
knowledge by fuzzy sets proposed by Zadeh [1-3],
and the application of the fuzzy set theory in control
proposed by Mamdani [4] have proved to be very
successful in dealing with nonlinearities, parameter
uncertainties and cases when it is difficult to obtain a
useful mathematical model.

A commonly known disadvantage of fuzzy control
is the lack of analytical tools. It has proved to be
extremely difficult to develop a general stability
analysis theory and a design procedure for fuzzy
systems. Tanaka and Sugeno [5] introduced the
method of analysis based on the fuzzy model in which
sets of fuzzy rules are used to imply suitable local
linear state space models from which local controllers
can be determined. The stability of the overall system
is determined by the Lyapunov stability analysis. The
stability conditions require that for all the local linear
models a common positive-definite matrix P should
be found to satisfy the Lyapunov equation, and this is
a very difficult problem.

Cao et al. [6] suggested a way to avoid
determining the P matrix. Their method is based on
the linear uncertain system theory. In this method the
stability analysis of a fuzzy control system is
converted to the stability analysis of linear time-
varying subsystems. In [7] the necessary and

sufficient condition for the stabilisation of the MIMO
fuzzy control system are given and the procedure for
obtaining a stabilising feedback control law is
proposed based on the decomposition principle by
which the design of a fuzzy discrete-time control
system is decomposed into the design of  the
“extreme” subsystems.

The methods proposed in [5-7] can be used in
analysis and design for a wide class of complex
control system. These methods can be very useful for
off-line controller design, but they are not suitable for
use as on-line controller design procedures in
adaptive control because of their complexity.

In this paper a simple controller design method for
SISO systems is proposed. It is a version of the pole-
placement method [8] modified for time-varying
systems and it is suitable for use in adaptive control.
The method is based on the Takagi-Sugeno input-
output fuzzy model [9], but it uses an approach that
differs from the methods proposed by Tanaka and
Sugeno [5] and Cao et al. [6-7]. Instead of designing
the local control laws for local linear models and then
checking the stability of the overall system, in this
method the overall fuzzy input-output model is
considered as a linear time-varying model and a linear
time-varying controller is designed that provides the
closed-loop system behaviour that matches the
desired dynamics. The stability is proven for a class
of control systems.

This paper is organised as follows: Section 2
shows the outline of the Takagi-Sugeno input-output



fuzzy model and describes how it can be represented
as a linear time-varying model. Section 3 gives a
method of pole placement design for time-varying
systems. Section 4 gives the controller design
procedure for a class of systems for which the
stability is proven. Section 5 shows the application of
the proposed method in adaptive control of the
laboratory liquid level rig.

2  Dynamic Fuzzy Model
Assume that the fuzzy model, proposed by Takagi
and Sugeno [9-11], is used for description of the
dynamic behaviour of the process. The fuzzy model is
composed of local linear models using following
inference rules:
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where Ri denotes ith inference rule; xj is jth variable of
the premises; i

jF  denotes the fuzzy set defined on the

universe of discourse of the variable xj, used in ith
inference rule; yi output of the ith local model; y
output of the model; u input of the model; i

ja , i
jb , ic

parameters of the ith local model (consequence
parameters) and d the process dead time.

The premises of the discussed model can have
more than one variable. The local models are of a
SISO type. The premise variables xj can be the values
of the output y, the input u in the past time instants,
or some other signals.

Given the values of premise variables xj(k), the
final output of the fuzzy process model is inferred by
taking the weighed average of the local model outputs
yi:
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i
jµ - a membership function of the fuzzy set i

jF .

Using the shift operator q-1 the model (2) can be
expressed in the transfer-function form:

)()(),()1(),( 11 kckukqdkykq +=++ −− BA , (4)

where

∑
=

−− +=
na

1

1 )(1),(
j

j
j qkakqA ,

∑
=

+−− =
nb

1

11 )(),(
j

j
j qkbkqB ,

∑
=

=
nr

1

)(ˆ)(
i

ii
jj kvaka ,

∑
=

=
nr

1

)(ˆ)(
i

ii
jj kvbkb , (5)

∑
=

=
nr

1

)(ˆ)(
i

ii kvckc .

The equation (4) is the representation of the fuzzy
model (1) in the form of a linear time-varying model.
The consequence parameters i

ja , i
jb , ic  can be

obtained by the least squares method as described in
[9].

Non-measurable disturbance and unmodeled
dynamics of the process can be represented by
introducing the disturbance signal ζ superposed to the
output y:

)()()( 0 k+kyky ζ= ,

(6)
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where y0 is the output without disturbance.
Combining the equations (6) yields the following
model:
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3 Controller Design
It can be shown that the system with desired closed-
loop poles can be obtained using the following control
law:
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Definition 1: Let W denote the set of all polynomials
in the shift operator q-1 with time-varying coefficients,
and let:
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o :W×W→W is defined by:
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The B polynomial can be factorised as:
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where the B′  polynomial is monic. If the R
polynomial is such that it can be denoted by:
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Using (7), (8) and (10) the closed-loop system can be
denoted by:
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Let the coefficients of polynomials D, S, T and P be
chosen such that the following equations hold:
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Then the closed-loop system is obtained that can be
described by the following equation:
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where
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is the filtered disturbance signal. By solving the
equations (13-15) in each sampling period, and
calculating the control signal using control law (8),
the linear time-invariant closed-loop system with
desired poles can be obtained.

3.1 Stability Analysis
Although the control law based on the proposed
method provides the stability of the closed-loop
system, the coefficients of the R polynomial in (8)
can be time-varying. The stability of such a controller
is in general hard to prove. A sufficient condition for
the stability of the controller is that the coefficients of
the R polynomial should be time-invariant and that all
its roots should be inside the unit circle of  the
complex z-plane.

Consider a discrete-time process described by the
linear time-varying model (7), with the following
characteristics:

1. d = 0 (process is without dead time);
2. All coefficients of the B′  polynomial are

time-invariant;
3. All roots of the B′  polynomial are inside

the unit circle.

(16)



It can be proven that if the process satisfies the
conditions (16), there is a control law given by
equation (8) such that R is the polynomial with time-
invariant coefficients and all roots inside the unit
circle, that provides a linear time-invariant closed-
loop system with the desired poles.

If  d = 0 then equation (13) can be denoted by:
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is a polynomial with time-varying coefficients λi(k),
and
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is a polynomial with the coefficients γi. If the order of
the polynomial L is nl = na + nd, where na and nd are
the orders of the polynomials A and D respectively,
and the order of the polynomial Az is nlnz ≥ , then
the solution of the equation (17) is
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It is obvious that the equation (17) is satisfied for
arbitrary coefficients λi. Thus the coefficients of the
D polynomial can also be arbitrary. The relation
between the coefficients of the polynomials D and
R′ is given by equation (11), so the coefficients of the
polynomial R′  can have arbitrary values. The
polynomial R is given by (9). If the coefficients of the
polynomial B′ are time-invariant then, choosing the
polynomial R′  with constant coefficients, the
polynomial R with the time-invariant coefficients can
be obtained.

3.2. Controller design procedure
If the conditions (16) are satisfied, the following
procedure can be used for the controller design:

Step 1: Determine the coefficients ai(k), bi(k) and c(k)
using membership functions obtained by the
fuzzyfication procedure and formulas (3) and (5).

Step 2: Choose the polynomials AM, BM and Ao.

Step 3: Choose the R′  polynomial  and form the D
polynomial using (11).

Step 4: Form the L polynomial using (18) and the Az

polynomial using (19).

Step 5: Calculate the coefficients of the S polynomial
using (20).

Step 6: Calculate the coefficients of the polynomials
R, T and P using the equations (9), (14) and (15)
respectively.

For the above design procedure the values of the
membership functions have to be known. If one of the
membership functions depends on the current control
signal value u(k), the procedure is much more
complicated. Instead of the numeric values of
coefficients ai(k), bi(k) and c(k), the expressions

[ ]kkua j ,)( , [ ]kkub j ,)(  and [ ]kkuc ,)(  have to be

used in all steps of the design procedure. The control
signal is obtained by solving the following equation
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the polynomials R, S, T and P.

4 Example: A Laboratory Liquid
Level Rig
The proposed method is applied in adaptive control of
a laboratory liquid level rig shown in Fig. 1.

A pump with a squirrel cage induction motor
controlled by a frequency converter provides the
water flow. The control signal u is the frequency
converter reference. The operation range of the motor
is from 10 to 45 Hz. The valve opening z is



considered as a measurable disturbance, ranging from
55 to 100%.

y
inlet
flow

Pump

M

Frequency
converter

Motor

z

Valve

Tank

Controlleru

y r

outlet
flow

Fig. 1. Laboratory liquid level rig

The objective is to control the liquid level y in the
tank in such a way that the response to the step of the
level reference signal yr has an overshoot not greater
than 5% of the level reference change. The level
reference range is from 600 to 650 mm.

The performance of the self-tuning controller
based on Takagi-Sugeno fuzzy process model is
compared to the performance of the self-tuning
controller based on linear process model.

The linear model of the process is given by the
following equation:

)()()1()()1( 121 kczkubkyakyaky ++−+=+ . (21)

The effect of the measurable disturbance signal is
modelled with the last term of the equation (21). The
performance of the self-tuning controller with linear
process model is shown in Fig. 2. As can be seen, the
effect of the disturbance to the closed-loop response
of the system is significant. This is the consequence
of the fact that the changes of the disturbance signal
cause the changes of the process parameters. Because
the changes of the process parameters are large and
frequent the parameter estimation algorithm cannot
follows them, resulting in inaccurate values of the
model parameters.

The fuzzy model is given by the following rules:
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Fig. 2. The performance of the self-tuning controller
with linear process model.

The membership functions of the premise fuzzy sets
are shown in Fig. 3.
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Fig. 3. The membership functions of the premise
fuzzy sets.

Thus, the fuzzy process model consists of three
local linear models combined using fuzzy logic. Every
local model corresponds to an operating area
characterised by the value of the measurable
disturbance signal z. The main advantage over the
linear model is that the parameters don’t have to be
modified as the operating area changes.

The performance of the self-tuning controller with
fuzzy process model is shown in Fig. 4. System
behaviour is obviously much better than the system
behaviour obtained with the self-tuning controller
based on linear model. The compensation of the
disturbance is much better and the responses to the
step changes of the reference signal yr are without
overshoots for any values of the valve opening in the
considered range. Additionally, it can be seen that the



control signal u is less active when the self-tuning
controller with fuzzy model is used (see Fig. 4) than
when the self-tuning controller with linear model is
used (see Fig. 2). This feature is of great importance
in the real-world applications.
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Fig. 4. The performance of the self-tuning controller
with fuzzy process model.

5  Conclusion
A self-tuning controller based on the Takagi-Sugeno
fuzzy model of the process is proposed. The fuzzy
model is represented as a linear time-varying model
and the pole-placement design procedure modified for
the time-varying systems is applied to obtain the
desired closed-loop poles. The stability is proven for
a class of SISO systems. Because of its simplicity,
the proposed method is suitable for the on-line
controller design in the adaptive control systems.

The proposed self-tuning controller is compared
with the self-tuning controller based on linear process
model. Both controllers are experimentally tested on a
laboratory liquid level rig. System behaviour obtained
with the proposed controller is much better than the
system behaviour obtained with the self-tuning
controller based on linear process model.
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