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Abstract: - A new algorithm obtained by using network measure such as Akaike information criterion (AIC) or
Bayesian information criterion (BIC) is presented to systematically select the optimal structure, via the number of
hidden nodes, of Backpropagation (BP) networks. Simulation results show that the algorithm performs
satisfactory in all cases considered.
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1  Introduction
Backpropagation (BP) algorithm is a classical
method for learning multilayer feedforward (MLFF)
networks. It is a supervised learning technique that,
for a given network, compares the output from the
network (model output) to the known output given
by user (actual output) and then readjusts the
weights in a backward direction. In BP networks, the
steepest descent or gradient descent method is used
to minimize the sum of squared errors (system error)
between the actual output and the model output.
Although it is widely and successfully used in many
applications, the BP algorithm suffers from a
number of shortcomings. One is the slow
convergence rate, with which many iterations are
required to train the network even for simple
problems. Another shortcoming is due to the fact
that there is no known method that provides the
optimal structure of the network used for a given
data set. The structure of the network seriously
affects its performance of the model. As the number
of nodes in the input and output layers are
application dependent, the remaining problem is how
to optimally choose the number of hidden nodes.

Hirose et al. [1] proposed an algorithm to find the
optimal number of hidden nodes by changing the
number of hidden nodes dynamically until a minimal
number is found for which convergence (total mean
squared error, MSE of less than 0.01) occurs. A
straight MSE performance measure cannot be used
to compare two different models directly because
different numbers of parameters may be involved
[2].

Instead of the MSE, Akaike information criterion
(AIC) and Bayesian information criterion (BIC) can
be utilized to select the best model from candidate
models having different numbers of parameters. In
BP networks, the number of parameters is generally
the number of weights and biases. A new algorithm
is proposed to systematically determine the optimal
number of the hidden nodes by employing these
criteria. So, the optimal structure of BP networks is
obtained.

In our experiment, we present the results of our
simulation studies that were intended to assess the
performance of the algorithm. For this purpose, we
employed daily streamflow data (rainfall-runoff) at
three stations, namely Srinagarind (SRI), Khao
Laem (KLM), and K32A in the Mae Klong River
Basin located in the western part of Thailand [3] in
the comparative simulations.

2  Backpropagation Networks
Backpropagation (BP) method was discovered
independently by several researchers for different
reasons such as Werbos [4], Parker [5], and le Cun
[6]. However, credit is usually given to Rumelhart et
al. [7] who developed this method into an applicable
procedure, which has been widely used.

BP method is a supervised learning technique for
learning associations between input and output
patterns. This method can be applied to any MLFF
networks with differentiable activation functions as
shown in Fig.1. It is a generalization of the original
two-layer perceptron (no hidden layer) introduced by
Rosenblatt [8, 9], especially the version developed



Fig.1 Backpropagation network architecture
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by Widrow and Hoff [10]. Thus, it is also called the
generalized delta rule. Like the delta rule, it is an
optimization method based on steepest descent
method that adjusts the weights to reduce the system
error.

Originally, the steepest descent method is used to
train BP networks. It uses only the first derivatives
of the error function. The error, E, for the network
over all patterns is defined as (half) the sum of
squared differences between the actual output and
the model output in the output layer:
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where opk and xpLk are the actual output and model
output for the kth node in the output layer L and the
pth training pattern, respectively, M is the number of
data points, and NL is the number of nodes in the
output layer.

The goal is to evaluate the weights in all layers of
the network that minimize the system error. In
steepest descent, the search direction at the tth
iteration is the negative of the gradient:
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and the weight update is
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where ∆wt+1 is  weight vector from wt to wt+1, st is
search direction of steepest descent, and λ is  step
size.

To train a BP network, each input pattern is
presented to the network and propagated forward
layer by layer until the output of the network is
calculated. Then, the model output is compared to
the actual output and an error is determined. The

error signals are used to readjust the weights layer by
layer in a backward direction. This process is
repeated for each training pattern until the system
error converges to a minimum. Hence, the BP
algorithm can be summarized as follows:

1. Initial all weights and biases to small random
values.

2. Present a training pattern pair (x0, o) where x0 is
the input vector and o is the actual output vector.

3. Compute the calculated output xjk starting with
the layer j from 1(the first hidden layer) and
proceeding layer by layer toward the output layer
L for every node k. In this case, the sigmoid
function is selected as an activation function:
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where yjk is the summation output of the kth node
in the jth layer and Nj is the number of nodes in
the jth layer.

4. Compute the error signals eLk for the weights of
the output layer and ejk for the weights of the
hidden layers; and the weight change ∆wjki

starting with the layer j from the output layer L
and backtracking layer by layer toward the input
layer:
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where λ is the step size or learning rate constant,
α is the momentum constant, and t denotes the
iteration number.

5. Update the weights vector at (t+1)th iteration:
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6. Repeat steps 2-5 for all patterns until the system

error has reached an acceptable error criterion.

3  Structure of Backpropagation
Networks

Since BP training can be very costly, and the
training cost increases as the network becomes more
complex, the network should be kept as simple as



possible (as few layers and nodes as needed).
Determining the number of hidden nodes is more
complicated than that for the input and output nodes.
The optimal number of hidden nodes is not known in
advance. It is usually determined by trial-and-error.
This approach starts with choosing an architecture of
the network based on experience and tests the
performance after each training phase. This process
is continued as long as the performance increases
and stopped once the performance begins to
decrease.

Basically, network complexity measures are
useful both to assess the relative contributions of
different models and to decide when to terminate the
network training. The performance measure should
balance the complexity of the model with the
number of training data and the reduction in the
MSE [11].

There are two well-known network measures,
namely Akaike information criterion (AIC) [12] and
Bayesian information criterion (BIC) [13]. They are
given as:

AIC  =  M ln(MSE) + 2 P   (9)

BIC  =  M ln(MSE) + P ln(M) (10)

where M is the number of data points used to train
the network and P is the number of parameters or the
size of the model:
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Here Ni is the number of nodes in layer i and L is the
output layer. MSE is defined as follows:

MSE  =  SE / M (12)

where SE is the sum of squared errors. Among the
candidate models, the AIC or BIC criterion chooses
the one corresponding to its minimum value.

It is noted that while the MSE is expected to
progressively improve as more parameters are added
to the model, the AIC and BIC penalize the model
for having more parameters and therefore tend to
result in smaller models. These two criteria can be
used to assess the performance of the overall
network, as they balance modelling error against
network complexity. In Eqs. 9 and 10, the first term
is a measure of fit and another term is a penalty term
to prevent over fitting. As the BIC is more consistent
[14], it is used in the following.

4  Proposed Algorithm
A new algorithm is proposed to systematically
determine the optimal number of the hidden nodes
using the procedure that gradually increases the
network complexity and employs the BIC for
terminating the training phase. The procedure starts
with a small number of hidden nodes and trains the
network until the system error is below an
acceptable level. Then add a hidden node and retrain
the network again. This process is repeated until the
current BIC is greater than the previous one. The
proposed algorithm can be summarized as follows:

1. Create an initial network with a tentative hidden
node and randomize the weights.

2. Train the network using the chosen method i.e.,
BP algorithm until the system error has reached
an acceptable error criterion. A simple stopping
rule is introduced to indicate the convergence of
the algorithm. It is based upon the relative error
of the sum of squared errors (SE):
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where ε1 is a constant that indicates the
acceptable level of the algorithm and SE(t)
denotes the value of SE at iteration t.

3. Check for terminating the training of the network.
A termination criterion is suggested based on the
relative BIC:
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where ε2 is a constant that indicates the
acceptable level for the structure of the network
and k denotes the loop number of the network. If
the relative BIC is less than or equal to ε2 or the
current BIC is greater than the previous, go to
step 4; otherwise add a hidden node and initialize
the weights then go to step 2.

4. Reject the current network model and replace it
by the previous one, then terminate the training
phase.

5  Experimental Results
For forecasting daily streamflow in the Mae Klong
River Basin located in the western part of Thailand,
with forecasting lead time equal to one day, a simple
network having 5 input nodes and one output node
was used for the three stations considered, namely



Fig.2 Learning curve of SRI for various
numbers of hidden nodes
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Srinagarind (SRI), Khao Laem (KLM), and K32A
[3]. An architecture of the 5-1-1 network consisting
of 5 input nodes, 1 hidden node, and 1 output node
was selected as the initial network. We employed the
original BP algorithm as described in Section 2 for
training the network. The acceptable level of the
algorithm, ε1, is set to 0.0001 and the acceptable
level for the structure of the network, ε2, is set to
0.01. As mentioned in Section 4, the algorithm is
terminated when the relative BIC less than or equal
to ε2 or the current BIC is greater than the previous
one. From these results, the algorithm is terminated
when the 5-3-1 network is training. Thus, the 5-2-1
network is the best. In Tables 1-3, EI denotes the
efficiency index, which is defined by Nash and
Sutcliffee [15] as
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where SE  = Sum of squared errors,
ST  = Total variation,
yi    = Actual output, i.e. observed

discharge at time i,

i

^

y  = Model output, i.e. forecast discharge

at time i,
−

y   = Mean value of the actual output,
M   = Number of data points.

For more information, we also considered the 5-
5-1 network that has more hidden nodes. The
learning curves of three discharge stations namely
SRI, KLM, and K32A for various numbers of hidden
nodes are shown in Figs.2-4, respectively. It is clear
that the performance of the optimal network is the
best in terms of both the minimum of system error
and the computation time. Moreover, the optimal
network can converge to the minimal point.
Additional information can be obtained from Tables
1-3 that show the performance of the various

architectures of the networks for SRI, KLM, and
K32A, respectively.

Table 1 Comparison of the various architectures of
the networks for SRI

5-1-1 5-2-1 5-3-1

Epoch 3170 4644 6053
SE 0.85 0.30 0.30
EI 0.98 0.99 0.99
BIC -17123.94 -19322.81 -19256.75
Time
(seconds)

824 1364 1958

Table 2 Comparison of the various architectures of
the networks for KLM

5-1-1 5-2-1 5-3-1

Epoch 2476 2360 2901
SE 1.73 1.30 1.34
EI 0.92 0.94 0.94
BIC -15556.93 -16125.14 -16011
Time
(seconds)

644 693 953

Table 3 Comparison of the various architectures of
the networks for K32A

5-1-1 5-2-1 5-3-1

Epoch 45 1549 2254
SE 4.86 1.41 1.31
EI 0 0.71 0.73
BIC -5862.53 -7166.56 -7194.67
Time
(seconds)

6 227 367



Fig.3 Learning curve of KLM for various
numbers of hidden nodes
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Fig.4 Learning curve of K32A for various
numbers of hidden nodes
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6  Conclusion
The BIC can be used to choose the best model from
candidate models having different numbers of
parameters. By using this network measure, a new
algorithm was proposed to systematically determine
the optimal structure of BP networks. Experimental
results show that the proposed algorithm can
perform well in all cases considered. Chosen by the
proposed algorithm, the optimal structure of the
network not only can minimize system error and
computation time, but also can converge to the
minimal point.
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