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1. Introduction

For speech recognition problems solving there are some paradigms and approaches.
Among of them we can mention statistical approach based on hidden Markov models
[1], [2], [3], [4], nonlinear dynamic method using neural networks [5], [6], algebraic
approach [7], linguistic methods [8] and so on. However, in spite of some success in
this problem solving there exist difficulties connecting with speech signal
peculiarities. Speech signal by its nature has two aspects [4]. Firstly, speech of the
person is defined by physical parameters, such as vocal tract length, glottal size and so
on. Secondly, the speech producing is impossible without neural control of the
articulations, which defines the personal learned abilities such as dialect or regional
accents, pronunciation, speed and timing of the articulators. These two reasons find
the reflection in speech signal nonlinearity, and it is necessary to implement nonlinear
model.

This paper presents the nonlinear speech signal decomposition based on Volterra-
Wiener functional series [9], [10]. It is shown the usage this nonlinear decomposition
for nonlinear bank filters designing. It is proposed to solve the phoneme recognition
problem by means of identification algorithm of these filters.

2. Linear and nonlinear decomposition of signal into series of functions and
functionals

It is well known that music signal y(t) in the time t can be represented by means of
Fourier series of the kind:

y(t)= ∑
∞
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where Y(ωk) are the coefficients of Fourier series as the following:
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Here T is interval of signal observation and ωk = k
T

π2
 is angular frequency. The

relation (1) is described a linear decomposition of temporal  function  y(t)  into  series
from orthogonal Fourier functions exp(iωk t)=cosωk t+isinωk t.  On other hand, music
signal  as  linear  process,  which  is  generated  by  linear  dynamic  system      (LDS)
exclusively  has  a  full  representation  by  means  of  linear  series  from   orthogonal
functions  Since a stationary LDS may be characterized by means of transfer function

H(ωk) the input signal x(t) acting on LDS generates its output signal y(t):
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As concerning speech signal, this signal is the product of strongly nonlinear dynamic
systems (NDS), i.e. one is nonlinear process when its harmonic components have
actions each other. In connection with this such signal can be represented by means of
Volterra-Wiener series as the following [9], [10]:
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Comparing (3) with (4) we can see that mentioned above linear decomposition is
particular case of this nonlinear decomposition similarly LDS is specific case of NDS.
It follows from (4) the stationary NDS represents in the form of parallel connection of
one-, two-, …, multi-dimensional stationary LDSs with input signals x(t1,θ),
x2(t1,t2,θ)= x(t1,θ) x(t2,θ),…, xm(t1,…, tm,θ)= x(t1,θ)… x(tm,θ) respectively.

3. The Volterra-Wiener functionals on finite intervals and their identification
algorithm based on measuring the Wiener kernels

When the Wiener method [9], [10] applies in practice for the NDS analysis it is
necessary to tell about physical white noise, that is about the process with the finite
spectrum which overlaps the bandwidth of the system under study. Moreover, when
NDS model based on Volterra-Wiener series is realized on a computer discrete input
xn and output yn signals and Wiener kernels hm[n1,...,nm] will have a finite duration in
time; that is why some refinement of the relation (4) is required [11].
Let us write discrete Volterra-Wiener functionals for the discrete signals xn and h0,
h1[n], h2[n1,n2],… given on the finite time intervals, that is n, n1,…,nL= 0, 1,...,N-1
[11], [12].
To represent one-dimensional sequences yn and xn in with the finite length N in
frequency domain let us consider discrete Fourier transform (DFT) [13]:
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and also its multidimensional analogues, i.e. the m-dimensional DFT's (m=2,3,…) of
the kind:
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Taking into account (15), (16) and using inverse DFT and its multidimensional
analogues let us transform relation (14) to the form [11], [12]:
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We consider index N-k1 in (17) with respect to modulo N [12], i.e. (N-k1)modN=((N-
-k1)). If xn is N-pointed sample of stationary Gaussian white noise then
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−

=

−

=

−

=

−
−

=

=δ==
1

0

1

0
002

1

0

1

0

11111 N

n

N

k
,kk

N

k

kn
Nk

N

n
n Y

N
NY

N
wY

NN
y

N
..

The identification scheme of discrete NDS is similar to Wiener's circuit for
determining m-order kernel [9]. This scheme may be present as follows: white
Gaussian noise with zero mean and variance Dx, is given by the inputs of unknown
NDS and bank of m complex exponential filters. Then the output signals from the
system and bank are multiplied and the result signal is averaged [10].

Let us calculate DFT-image of kernel h1[n]. First obtain signal F)(
ny 1  from the output

of known system that is filter with complex exponential impulse response
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Calculate an averaged signal from the scheme output, consisting of unknown NDS,
known system and multiplier:
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It was shown in [10], [12] that if {xn} is the sample of white Gaussian noise, then their
coefficients Xk are N-pointed sample of Gaussian noise, that is the properties are true:

M[Xk] = 0;
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and DX=NDx. Taking into account (10) we transform (9) to the form
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Symmetry property of kernel H3[k1,k2,k3] was used for deduction (11). On the other
hand, using (8) we can calculate the mean of partial population:
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Taking into account (11), (12) we have that [11], [12]
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According to relation (13) H1[k] is the sample of transfer function H1(ω) for the
stationary LDS, identified on the basis of stationary white noise {xn}.
The DFT-image of kernel h2[n1,n2] may be calculated in an analogous manner. In this

case signal 
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We can also show that DFT-image of kernel h3[n1,n2,n3] is [12]:

H3[k1, k2, k3]=
x

kN,kkN,kkN,k

x

*
k

*
k

*
kkkk

D

)]k[H]k[H]k[H(N

ND

XXXY

66
213312321

3

321321 −−−++ δ+δ+δ
− .

In this paper we use the identification scheme by Wiener kernel measuring for NDS
testing by the white noise on finite interval [11], [12] and also the analogous
identification scheme for other types testing signals (see, for example Ref. [14], [15]).

4. The synthesizer and recognizer of phonemes of Belarusian language based on
nonlinear decomposition

The obtained nonlinear decomposition (4) may be used for identification of group of
phonemes (say, sonorous phonemes of Belarusian language) by means of mentioned
m-order multidimensional nonlinear filters.
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For recognition the following classification is used [16]. All the phonemes of
Belarusian language are divided into two groups: the first group has vocal (vowel)
ones, the second group has consonant ones.

The vocal phonemes are again divided into labial once (Î , Ó) and nonlabial
once (À, Ý, I{Û}). (The sound Û is not considered as individual phoneme since in
Belarusian language it meet only after hard consonants and is modification of the
phoneme I).

The consonants (due to difficulties in their recognition) are classified on the
basis of these two approaches [16].
According to the first approach we are using the nonlinear filters structure consisting
of 7 nonlinear Volterra-Wiener filters. Each from them may be stimulated by a
different testing signal (for example by white noise, by colored noise, by tone, by tone
plus noise etc.) depending on their position in the first scheme. But first approach has
essential lack because sonorous group consists of 12 phonemes that it makes difficult
to use the identification scheme in practice.
That is why we apply the second approach for more reliable phoneme recognition.
According to second approach we have a recognizer (synthesizer) in the form of the
nonlinear bank filters consisting of 10 Volterra-Wiener filters which may include
from 1 to 6 nonlinear multidimensional (m-order) filters (or functionals). Thus, by
increasing the channel number in the nonlinear filter structures (or the number of
testing signals) we increase a probability of phoneme recognition, generally speaking.
It is important to mention that both approaches to phoneme recognition do not
exclude each other and are using combined in phoneme recognition problem solving.
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