
A Java Based DSM System for User Defined Shared Data Objects

OZGUR K. SAHINGOZ and NADIA ERDOGAN
øVWDQEXO 7HFKQLFDO 8QLYHUVLW\

Computer Engineering Department
$\D]DJD� ������ øVWDQEXO� 785.(<

Abstract: Distributed Shared Memory (DSM) is a model for interprocess communication in distributed systems. A
DSM system provides its users a simple, shared memory abstaction automatically, while message passing systems
require data movement to be specified by the programmer. The focus of this paper is on software design and
implementation of a Java based , user-level DSM system which facilitates sharing of user defined data objects across
nodes in a distributed environment. Shared data is distributed across the system, using the read-replication (multiple
reader/single writer) strategy. The release consistency model with write-invalidate coherence policy is adopted, where
the owner of a shared data object is directly responsible for enforcing coherence. The system provides a set of
primitives as a Java library, with which shared data objects are uniquely named and manipulated.

Key-words: distributed computing, shared abstractions, distributed shared memory algorithms, memory coherence,
write-invalidate protocol.

1 Introduction
Shared memory is widely believed to provide an easier
programming model than message passing for
expressing parallel algorithms. Distributed shared
memory (DSM) is a model for interprocess
communication in distributed systems. In the DSM
model, processes running on separate nodes can access
a shared address space through normal load and store
operations and other memory access
instructions.(Fig.1.) The underlying DSM system
provides its users with a shared, coherent memory
address space. Each user process can access any
memory location in the shared address space any time
and see the value last written by any other process.

In recent years, the availability of high speed
networks and high performance microprocessors is
making networks of computers an appealing vehicle
for cost effective parallel computing. Supporting the
abstraction of shared memory on these high
performance computers results in DSM systems which
provide a shared address space over a message
passing interconnect. The goal of the DSM system is
to transparently run programs written for hardware
shared memory systems. DSM systems have many
advantages over message passing systems [1,2].
Mainly, they provide the user a simple, shared

memory abstraction automatically, while message
passing systems require data movement to be specified
by the programmer. Many approaches have been
proposed to implement DSM systems [3,4,5,6,7].
Generally, DSM implementations are based on
variations of write-update and/or write-invalidate
protocols. Recent implementations use relaxed
memory consistency models such as release
consistency [4].

The focus of this paper is on software
implementation of a DSM system . It presents a Java
[8] based DSM system which provides a set of
primitives with which arbitrary shared abstractions can
easily and efficiently be implemented across a
distributed hardware platform. Our implementation
uses the read-replication (multiple reader/single
writer) strategy of distributing shared data across the
system.The replication of shared data objects
complicates issues in memory coherence. In general,
applying unnecessary coherence operations can waste
bandwidth, create extra CPU overhead and cause
unnecessary access faults. We use the release
consistency model with write-invalidate coherence
policy where the owner of a shared data object is
directly responsible for enforcing coherence. Shared
memory is structured as variable size user defined data

Fig.1. Distributed Shared Memory: Each process sees a shared address space,
denotedby the dashed outline, rather than a collection of distributed address spaces.

objects in the source language Java.. Presently, only
language defined types of variables are supported.
Work is going on to include instances of user defined
classes. The DSM mechanism is implemented at the
user level, as a Java library for linking to application
programs. It runs on an Ethernet network of Intel
NT4.0 processors.

2 Information Structure
We assume an implementation where a shared data
object directory is distributed among nodes and is
organised as a hash table. Each node maintains an
information structure for each shared data object
which is either resident in its memory, or which is
created on the local memory of another node but has
been accessed by processes local to that node. An
entry of the directory contains many pieces of
information for each object, as its unique name, the
local address, meta information (e.g., size, value) , etc.
for each shared data item. The information in the
directory is used to locate and transfer data objects,
and to invalidate replicas.

Name: Two processes in an application share a data
object if they call it by the same name. Therefore
within each application, all shared data must be named
uniquely across all of their replicated copies. The
item’s name is its unique identifier.

Owner: The identity of the unique owner node
which owns the only writable copy of the shared data
object and has the right to update that data object. A
process should first get the ownership of data before it
can write to it.

Copyset: Set of nodes that have copies of a shared
data object. This list is maintained by the owner node.

Probable Owner: Points towards the owner of a
shared data object. When a node needs a copy of a
data object, it sends a request message to the probable
owner. If the probable owner does not have a copy of
the object, it forwards the request to its probable
owner. The request is thus “forwarded” until a node
having a copy of the data object is reached.

Status: A shared data block may be in one of the
following states at any time:
readable: the data object is available and not locked
writable: the data object is available and its replicas
are invalidated
available: The data block is present and contains valid
data
 locked: access to the object, except from the owner, is
denied

Node List: Set of nodes currently participating the
DSM system.

3 The DSM Algorithm: Read-
Replication
The algorithms for implementing DSM deal with the
problem of distributing shared data across the
system.Two frequently used strategies are migration
and replication. Migration implies that only a single
copy of a data object exists at any time, so the data
item should be moved to the requesting node for
exclusive use. This strategy is preferred when
sequential patterns of write sharing is prevalent.
Replication, on the other hand, allows for multiple
copies of the same data object to reside in memories
of different nodes. As we consider read sharing to be
the characteristic of memory references in typical
distributed applications, we have chosen to implement
the read-replication (multiple reader single writer)
[3] strategy to enable simultaneous accesses by
different nodes to the same data and to minimize
access latency.

With the read-replication algorithm, a read
request results in fetching and creation of a replica of
a data object from a remote location to the caller’s
memory space. Thus simultaneous local execution of
read operations at multiple nodes is possible. Only
one node at a time can receive permission to update a
replicated copy of a shared data item. A write to a
writable copy requires the use of other replicated
copies be prevented. Therefore, we implement an
invalidation based algorithm.

 For each particular data object, the identity of
the probable owner is kept.All requests go the
probable owner, which usually is also the real owner.
However, if the probable owner is not the real one,
the algorithm forwards the request to the node
representing the probable owner according to the
information kept in its DSM directory. For every read,
write and invalidate request the probable owner field
changes accordingly, to decrease the number of
messages to locate the real owner.

The owner of data object also keeps its copy
set, the list of nodes that have replicas of the shared
data object. The copy set goes together with the data to
the new owner, which is also responsible for
invalidations. For a write request, invalidation
messages are sent to all nodes on the copy set.

4 The Coherence Policy: Release
Consistency with Write-Invalidate
Protocol
The replication of shared data blocks complicates
issues in enforcing memory coherence. The coherence

policy determines whether the existing copies of data
item being written to at one node will be updated or
invalidated on the other nodes. A simple
implementation of a write-update protocol, where a
write updates all replicas of a shared data item is likely
to be inefficient, because many replicas may be
updated, even if some of them are not going to be
accessed in the near future. Therefore, we use the
write-invalidate protocol for release consistency.

 Release consistence [7] is a relaxed
memory consistency model that permits a node to
delay making its changes to shared data visible to
other processes until certain synchronisation accesses
occur. That is, it allows views of shared data by
different nodes to become inconsistent until
subsequent synchronization events. Thus, release
consistency results in better performance by letting
write accesses to be pipelined and guarantees results
equivalent to sequential consistency for a program that
contains enough synchronization to avoid data races.

The write-invalidate protocol allows for many
replicas of a “read-only” shared data, but only one
copy of a “writable” data object. All replicas of the
shared data object except one are invalidated before a
write request can proceed. Our implementation of the
protocol is as the following:

For a read request: If the data is available, it is
returned immediately. If the data is not available, a
read request is sent to the probable owner and a copy
of the data is returned. The copy remains valid until an
invalidation request is received.
For a write request: If the data block is writable, the
request is satisfied immediately. Otherwise, a request
for a copy of the data, along with a request for
invalidation need to be sent such that the local copy
becomes valid and writable, and the original write
request may complete.

5 DSM Implementation
DSM management responsibility is distributed to all
nodes on the system. The identity of the probable
owner is kept for each data object. Requests are
forwarded to probable owners until the real owner is
located. The DSM algorithm is implemented by two
processes, a listener process (LP) and a message
interpreter process (MIP) present on each node of the
DSM system (Fig. 2.).

 Fig. 2. DSM Implementation

5.1 Message Communication
Communication between DSM processes takes place
through messages. Messages carry requests and
resulting information between local and remote
processes of the DSM system. We have chosen to use
a single message format for simplicity and efficiency.
Each message contains information about the request
type, the address of the originator of the request, and
various data about the shared object . Subfields of the
message are evaluated differently, depending on the
request type.

5.2 Listener Process
To handle message communications, this process
listens for incoming messages on a specified port of
the node. Sources of messages are either user
processes executing locally on that node or remote
threads of MIP processes. LP directly transfers the
received message to MIP.

5.3 Message Interpreter Process
MIP is a multithreaded process which is responsible of
DSM management. New nodes can be dynamically
added to or removed from the DSM system. Node list
is a data structure which keeps the identities of the

nodes currently present on the system and is
frequently used for selective multicasting. When a new
node introduces itself to the system, MIP issues a
broadcast message to all nodes on the network. Nodes
which have already registered themselves to the DSM
system acknowledge the new node with a reply
message and also add its address to their node lists.
The new node also builds up its node list with the
addresses of the nodes from which it has received
replies. Now, the integration of the new node to the
DSM system is completed.

MIP creates a lightweight, concurrent request
handler Java thread for each incoming request
message. On receiving a request message from LP,
MIP checks the type of the request and partitions the
message contents accordingly, extracting the
information necessary for its fulfillment. It creates a
new thread for that particular request supplying the
input data. Thus, multiple DSM requests are served
concurrently, each by a different MIP thread. This
improves program performance and modularity. All
active threads have exclusive access to the local DSM
directory to locate shared data. If the local directory
does not possess the necessary information, then
remote nodes have to be contacted. Threads use
selective multicasting or broadcasting techniques
depending on the type of the request, to contact

remote nodes. Selective multicast technique is used
when nodes on the copy set of a data item are to be
contacted. In this case, a thread, that sends messages
to n nodes, has to wait for n reply messages. The
thread determines an unused port and sends its identity
together with the multicast message to the target nodes
so that they can direct their reply messages to the that
particular MIP thread which initiated the multicast
communication. Establishing a direct communication
between remote MIP threads improves performance by
eliminating extra message traffic between DSM
processes. A MIP thread terminates itself after it
completes its task.

6 PRIMITIVES
The DSM system supports user defined shared data
objects. Its basic functionality is comprised of a
naming support and of calls with which shared data are
manipulated. The DSM mechanism is imlemented at
the user level, as a Java library for linking to the
application program. The primitives which make up
the user interface are discussed in detail below. Each
call takes three parameters in the form :

Call(name, vartype, error)

where name is the unique name of the shared object,
vartype is its type and error is a return value which
reports the success or the cause of the failure of the
request.

Create: The create call is used to initialize a shared
data object. All shared data must be named uniquely.
Naming as well as space allocation are achieved with
this call. The user supplies a unique identifier and the
type of the shared object. Presently, the basic data
types defined in Java, namely, integer, string,
char,boolean, float, long, byte, short and double can be
used. We are currently working on having instances of
user defined classes be treated as shared objects. On a
create request, MIP refers to local and remote
directories to check if the data object already exists.
If not, an entry in the DSM directory is allocated for
the data object and its ownership is assigned to the
requesting process.

Remove: The remove call is used to purge a shared
data object and remove it from DSM directories. Only
the owner of a shared data object has the right to use
this call. In case the requesting process does not
possess the ownership of the shared object, MIP
locates the object in the system, transfers its ownership

and removes its directory entry, also invalidating
other replicas.

Read: The read call is used to fetch and create a
replica of a shared data object from a remote location
to the caller’s memory space. If the data is in available
state in the local DSM directory, its value is returned.
If the local copy is in unavailable state, a read request
message is sent to the probable owner and a copy of
the shared object is returned. In case no entry for the
shared data exists in the local directory, MIP issues a
selective multicast message to all nodes on the node
list, to locate the owner of the data object and directs a
read request message to that node to get a copy of the
value of the object. The local copy remains in
available state until an invalidation request is
processed. Simultaneous local execution of read
requests at multiple nodes is possible.

Read-w: The unique owner process of a shared object
has the right to update it and owns the only writable
copy in its memory space. Therefore, a process should
first get the ownership of a data object before it can
issue a write request. The read-w call returns a valid
copy of the data object together with its ownership so
that the caller gets permission to update it. MIP sets
the status of the object as writable and also sends
selective multicast message to the nodes on the
copyset of the data object. The message contains an
invalidation request such that all replicas except the
local copy are invalidated, passing into unavailable
state.

Put: The owner process of a data object issues the put
call to update its value. MIP tries to locate an entry for
the object in the local DSM directory, as one should
exist if the caller is the real owner of the data object. In
case such an entry is not present, the call returns with
an access error. Otherwise, the value of the shared
object is updated and its state is changed to available,
as it now possesses a valid value.

Lock: The lock call inhibits all accesses to the shared
object, except the caller. The data object enters the
locked state. It is used for synchronization purposes, to
prevent data races.

Unlock: The data object changes into unlocked state
so that read accesses may be again performed.

7 Conclusion and Future Work
This paper presents the design and implementation of
a Java based, user-level DSM system that facilitates
sharing of user defined data objects across nodes in a
distributed system. The DSM system provides various
primitives for data manipulation. The system is
implemented on an Ethernet network of Intel NT
processors. The performance of the system has been
improved in several ways. False sharing results when a
DSM system can not distinguish between accesses to
logically distinct pieces of information. It can lead to
situations where multiple processes contest ownership
of a data block, even though they are modifying
entirely disjoint sets of data. False sharing is common
in systems which track accesses at the granularity level
of virtual memory pages. Our system uses type and
structure information for user defined data objects, at
the granularity level of programming language
variables. This prevents false sharing and also
introduces significant gains in performance as small
amounts of data are transferred. Another source of
improved performance is the use of selective
multicasting which reduces network traffic
remarkably. The multithreaded implementation of the
system also has a positive effect on the overall system
performance. We are presently working on an
extension to the system where instances of user
defined object classes may be shared. We are
considering using RMI (remote method invocation) for
an efficient implementation.

References:
[1] B.Nitzberg and V.Lo, "Distributed Shared
Memory:Asurvey of Issues and Algorithms", IEEE
Computer, Vol.24, pp.52-60, Aug. 1991.
[2] M.Stumm and S.Zhou,"Algorithms Implementing
Shared Memory", IEEE Computer, pp.54-64, May
1990.
[3] K.Li and P.Hudak, "Memory Coherence in Shared
Virtual Memory Systems", ACM Transactions on
Computer Systems, Vol. 7,pp. 321-359, Nov. 1989.
[4] P. Keleher, A.L.Cox, and W.Zwaenepoel, "Lazy
Release Consistency for Software Distributed Shared
Memory", Proceedings of 19th Annual Int. Symp. On
Computer Architecture,pp. 13-21, May 1992.
[5] K.Li,"IVY: A Shared Virtual Memory System for
Parallel Computing", Proc.of 1988 Int. Conf. On
Parallel Processing, IEEE Computer Society Press,
Calif., pp. 94-101, 1988.
[6] P.Keleher et al., "TreadMarks:Distributed Shared
Memory on Standart Workstations and Operating
Systems" Proc.Usenix Winter Conf., Usenix Assos.,
Calif., 1994, pp.115-132.

[7] J.B.Carter, J.K.Bennet, and W.Zwaenepoel,
"Implementation and Performance of Munin", Proc.
13th ACM Symp. Operating Systems Principles, ACM
Press, New york,1991, pp.152-164.
[8] G. Cornell, C.S.Horstmann, Core JAVA, Sun
Microsystems Press, 1997.

