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Abstract. Several formulations and methods used in solving an NP-hard discrete

optimization problem, maximum clique, have been considered in a dynamical sys-

tem perspective proposing continuous methods to the problem. A compact form

for saturated linear dynamical network recently developed for obtaining approxi-

mations to maximum clique has been given so its relation to the classical gradient

projection method of constrained optimization becomes more visible. Using this

form, a discussion on gradient-like dynamical systems as continuous methods in

�nding maximum clique has been carried. To show the one-to-one correspondence

between the stable equilibria of the saturated linear dynamical network and the

minima of objective function related with the optimization problem, La Salle's in-

variance principle has been extended to the systems with discontinuous righthand

side. In order to show the e�ciency of the continuous methods experimental results

have been given comparing saturated linear dynamical network, continuous Hop-

�eld network, cellular neural networks and relaxation labelling networks. It has

been concluded that the quadratic programming formulation of maximum clique

problem provides a framework suitable to be incorporated with continuous relax-

ation of binary optimization variables and hence allowing to use the gradient-like

continuous systems which have been observed to be quite e�cient for minimizing

quadratic costs.

1 Introduction

Maximum clique problem is to �nd a maximum complete subgraph of a graph. This

graph theoretical problem is computationally equivalent to some other graph theoret-

ical problems such as maximum independent set problem and minimum vertex cover

problem. Maximum clique problem and its equivalents are NP-hard optimization prob-

lems however, it is indispensable to �nd solution to them since these problems have

theoretical and practical importance and are encountered in a diverse domain. The

simplest idea to �nd the largest clique is to test all subsets of the vertices of graph to

see if they induce a complete graph. In the worst case, this idea in solving the problem

will give rise to a computing time exponentially growing with graph size. So in order to

cope with its NP-hardness, di�erent formulations and di�erent algorithms have been

used to solve the maximum clique problem and its equivalents. A complete review of

the formulations and algorithms developed can be found in [1,2,3,4]. In [5], the problem

is formulated as an unconstrained quadratic 0-1 program. Again in [5], it is also given

in linear programming formulation with unit simplex feasible region. In the papers that



aim to solve maximum clique and equivalents in the neural network domain [2,3,7,8,9],

energy descent optimizing dynamics is used. Yet another work is [4] which bene�ts the

saturated unstable linear dynamics. It is shown in [4] that, for almost all initial con-

ditions, any solution of this saturated linear gradient dynamical network de�ned on a

closed hypercube reaches one of the vertices of the hypercube and any reached vertex

corresponds to a maximal clique.

In the last years, there is an interest on approaches based on continuous optimiza-

tion. One of the main purposes of this paper is to show with a particular emphasize on

maximum clique problem that gradient and gradient-like systems present e�cient con-

tinuous solution methods for quadratic discrete optimization problems, and dynamical

system theory provides a usefull framework for analyzing such continuous methods and

many others. Gradient dynamical systems can be described in a state equation form

whose vector �eld is produced by the gradient of a scalar function, called energy. Energy

descent completely stable dynamics makes them suitable for minimizing a cost function

such that the stable equilibria to which trajectories converge correspond to local min-

ima of the cost function. So called gradient-like systems covering quasi-gradient systems

in [10] and many dynamical neural networks as special cases which are, in fact, not gra-

dient systems but they also have the same kind of dynamics and hence can be used for

minimizing cost functions with continuous optimization variables. It should be noted

that continuous Hop�eld network [11], Grossberg neural network [12], cellular neural

network [13] are of gradient-like systems and are used for solving several optimization

problems. Some variants of these networks such as Continuous Hop�eld Network (CHN)

in [3], Grossberg type neural networks in [7], Relaxation Labeling Network (RLN) in

[2], Cellular Neural Network (CNN) in [9] and Saturated Linear Dynamical Network

(SLDN) [4] are used for �nding approximate solutions to the maximum clique problem

[3-9]. This paper analyzes the dynamics of gradient-like systems which, in the case of

SLDN, gives rise to dynamical systems with discontinuous right-hand side. The analysis

shows that: i) SLDN, which is recently proposed [4] to obtain approximate solutions to

the maximum clique problem and found to be succesful, is, indeed, a continuous ver-

sion of the classical gradient-projection algorithm of optimization theory. ii) La Salle's

invariance principle can be extended to the systems with discontinuous right-hand side,

as a special case it is extended here for SLDN.

In Section 2, maximum clique problem will be de�ned, di�erent formulations and

algorithms in solving maximum clique problem will be described briey. In Section 3,

where the main contribution is given, dynamics of gradient systems will be revisited

�rst. Then, the dynamics of saturated linear dynamical network will be set up in a

compact form and gradient-like systems will be discussed in the view of optimization.

In this section, the stability analysis of gradient-like systems in the La Salle's sense will

be given by extending La Salle's [14] result on invariance principle to dynamical system

with discontinuous right-hand sides; hence it will be shown that there exists a one to

one corespondence between the stable equilibria of SLDN and the minima of objective

function. In Section 4, numerical results obtained using random graphs will be given

for SLDN, CHN, CNN and RLN.



2 Comparison of Maximum Clique Problem

Formulations

Maximum clique problem which can be related to a number of di�erent graph problems,

is computationally intractable. Even to approximate it with certain bounds gives rise

to NP-hard problem. There is a large class of important problems that can be reduced

to maximum clique in principle. One example is the problem of �nding the largest

number of simultaneously satis�able clauses [15]. Another class of problems that can

be e�ciently formulated as a maximum clique problem is the satis�ability of Boolean

formulas [16]. Applications of maximum clique problem cover a large spectrum: pat-

tern recognition, computer vision, information processing, cluster analysis information

retrival. First, de�nitions related to maximum clique problem will be given. Also ad-

jacency matrix and characteristic vector will be introduced and some results will be

stated by a number of facts. Then, di�erent formulations of the cost function for the

problem will be given and the algorithms used for solving them will be compared.

In the following de�nitions, the graph is assumed to have no loop, no more than

one edge associated to a vertex pair and have at least one edge.

De�nition \Clique": Let G = (V;E) be an undirected graph, where V is the set of

vertices and E � V � V is the set of edges. A subset S � V of vertices is called

a clique if for every pair of vertices in S there is an edge in E, i.e., the subgraph

introduced by S is complete. 2

De�nition \Maximal Clique" : A maximal clique S is a clique of which proper exten-

sions are not cliques, i.e., for any S0 if S � S0 and S 6= S0 then S0 is not a clique.

2

De�nition \Maximum Clique" : A maximum clique of G is a clique for which the

cardinality is maximum. 2

Maximum clique problem is to �nd the maximum cliques for a given graph.

For the formulations that will be introduced in the sequel the notion of adjacency

matrix and characteristic vector is needed.

De�nition \Adjacency Matrix" : LetG = (V;E) be an undirected graph. Let n = jV j

the number of vertices and let vi 2 V; i = 1; 2; ::; n denote the verticesA 2 f0; 1gn�n

is the adjacency matrix of G, i.e., for i; j = 1; 2; ::; n; aij = aji = 1 i� (vi; vj) 2 E. 2

While A denotes the adjacency matrix of G, A denotes the adjacency matrix of the

complement graph G. Since G is an undirected graph and has no loops it follows that

A is a symmetric matrix with aii = 0 for i = 1; 2; :::; n.

De�nition \Characteristic Vector" : Let S � V be a subset of vertices, xs 2 f0; 1gn

is the characteristic vector of S i�: i) xsi = 1 i� vi 2 S ii) xsi = 0 i� vi =2 S for

i = 1; 2; ::; n . 2

Two results following these de�nitions will be given without proof by Facts 1 and 2:



Fact 1: �A 2 f0; 1gnxn is an inde�nite matrix. 2

Fact 2: S is a maximal clique i� its characteristic vector xs satis�es the quadratic

equation (xs)T �A(xs) = 0. 2

Fact 2 does not characterize maximal clique S completely, but it shows that adjacency

matrix �A is closely related to the characterization of clique.

The complete characterizations of the maximal cliques will be given by means of

the following formulations. From the large number of max-clique problem formulations

and algorithms only fundamental ones will be renewed. First linear programming for-

mulation, then quadratic 0-1 programming formulation will be stated. Then di�erent

algorithms used and approaches dealing with the problem will be given for quadratc

formulation.

2.1 Linear Programming Formulation

The maximum clique problem can be formulated as the simplest type of constrained

optimization problems, i.e. linear programming, as follows:

minimize f1(x) = �eTx; subject to xi + xj � 1; 8(vi; vj) 2 E x 2 f0; 1gn

A solution x� to this program de�nes a maximum clique S for G as follows: if x�i = 1

then vi 2 S and if x�i = 0 then vi =2 S and the cardinality of S, jSj = �f1(x
�). This

formulation can be carried to quadratic formulation which will be renewed in detail in

the sequel by stating the constraints in the following way. Since for xi; xj 2 f0; 1g and

8(vi; vj) 2 E, xi+xj � 1, holds i� xi �xj= 0, the constraints in linear programming can

be removed by adding quadratic terms to the objective function twice. It is well known

that the linear programming formulation of maximum clique problem is not suitable

for continuous methods since the continuous relaxation of the integer variables may

lead to noninteger solutions.

2.2 Quadratic 0-1 Programming

As mentioned in the previous part on linear programming formulation, constrained lin-

ear optimization problem can be restated as unconstrained quadratic programming. In

[5] unconstrained quadratic 0-1 programming formulation is given not only for maxi-

mum clique problem but also for maximum independent set and minimum cover prob-

lems. Here only the formulation for maximum clique will be renewed.

Proposition 1: The maximum clique problem for the graph G is equivalent to solving

the following quadratic 0-1 program. minimize f2(x) = xT [A � I]x; such that

x 2 f0; 1gn. 2

The following theorem gives the correspondence between discrete local minima and

maximal subgraphs.



Theorem 1: Any x 2 f0; 1gn that corresponds to a maximal subgraph of G is a

discrete local minimum of f2(x) in formulation given in proposition 1. Conversely,

any discrete local minimum of the function f2(x) corresponds to a maximal subgraph

of G. 2

A branch and bound algorithm which is based on this model is used in [5]. Branch

and bound algorithms are set to �nd a global optimum by searching entire branch and

bound tree. This search is done by decomposing the given problem into subproblems.

Another quadratic 0-1 programming formulation [4], on which the SLDN is based,

for the maximum clique problem is given as follows.

min f3(x) := xT �Ax� eTx ; x 2 f0; 1gn ; (1)

Fact 3 : Any x� 2 f0; 1gn is a (discrete) global minimum of f3(x) given by (1) i� the

set S such that xS = x� is a maximum clique for G. 2

2.3 Motzkin-Straus Formulation

In [2,6], maximum clique problem is formulated as an inde�nite quadratic optimization

problem but this time it is continuous and linearly constrained. In both of the papers

[2] and [6] to be mentioned, the methods are based on Motzkin-Straus theorem [13].

The formulation used in those papers is restated here:

maxf4(x) =
1

2
xTAx x 2 �:=fx 2 Rn j eTx = 1; xi � 0g

It has to be noted f4(x) is inde�nite and feasible region is the unit simplex. The following

theorem which relates the maximum clique problem to the above stated formulation is

reproduced from Motzkin-Straus theorem [2,6].

Theorem 2: If � = max f4(x) over � then G has a maximum clique S of size k = 1

1�2�

This maximum can be attained by setting xi =
1

k
if vi 2 S and xi = 0 if vi =2 S. 2

This theorem gives an approach to �nd the size of the maximum clique not the clique

itself. Theorem given below is from [6] and it presents a relationship between the set of

distinct global maxima of f4(x) over � and the set of distinct maximum cliques of the

graph G.

Theorem 3: Every distinct maximum clique of a graph G corresponds to a distinct

global (hence local) maximum of the function f4(x) over � . The converse is false.

2

In [6] to determine the vertices in the maximum clique an algorithm is presented, but it

is reported in [2,6] that the computational cost is excessive. Yet another approach based

on the same formulation using Theorem 3 and a local version of it is given in [2]. In this

case, the formulation stated above is executed by relaxation labeling network (RLN).

Like other clique �nding neural network models [3,8,9], number of the computational



units used are as much as the number of vertices in the graph. Since this approach is

suitable for parallel hardware implementation, the computational cost problem in [6]

is reduced. Here, the algorithm is based on the dynamics of the RLN which performs

a gradient ascent search. If the solution obtained by RLN has the particular form of

xi =
1

k
for some i and xi = 0 for the others, then this solution corresponds to a maximal

clique. In this sense, the approach does not give rise to invalid solutions, but spurious

solutions which are in the above particular form may arise. A bene�t of the approach

in [2] over the one in [6], there is no need to calculate some parameters heuristically

during the execution.

2.4 Hop�eld Network

Among the neural network based approach used in maximum clique problem [2,3,7-9],

the one using Hop�eld Network [3] will be renewed here. The continuous dynamics and

the energy function of the continuous Hop�eld network are given below.

_x = �x+ g�(y)

yi = I +
X
j

wijxj ; x 2 [0; 1]n

E = �
1

2
xTWx� ITx+ eTg

g :=

�Z x1

0

g�1� (x)dx

Z x2

0

g�1� (x)dx � � �

Z xn

0

g�1� (x)dx

�

Where, _x stands for the time-derivative of the state-vector x. I = [1; 1; :::; 1]T is the bias

vector.W is the weight matrix de�ned as: wii = 0, wi;j 2 f�; 1g for all i 6= j with � < 0.

wi;j = wj;i = 1 i� there is an edge between the nodes i and j. Note that the weight ma-

trix is not the adjacency matrix but closely related to it. g�(�) = [g�(�); g�(�); :::; g�(�)]
T

is a separable function each element g�(�) of which is the sigmoidal function de�ned

as: g�(x) =
1

1+exp���x
with the gain factor �. In this mentioned work [3], rather than

considering the quadratic objective function and equating the energy function to this

objective, the well-known Greedy algorithm is mapped into the dynamics of CHN to

�nd maximum clique. In the suggested implementation of the CHN, forward Euler

method is used for the discretization, the number of iterations is chosen as the same

with the graph vertex number n, and furthermore � = �4 � n, I =
j�j

4
. It is stated in

[3] that the stable equilibrium points of the considered CHN are maximal cliques of a

graph G de�ning the weight matrix.

3 Gradient-like Systems

A dynamical system of the form

_x = �rc(x) (2)

is called gradient system and rc(x) is the gradient vector of a scalar n-dimensional

function c(�). The following well-known property of gradient systems [19] make them



versatile in optimization problems.

Theorem 4: _c(x) � 0 for all x 2 Rn, _c(x) = 0 i� x is an equilibrium of (2). 2

As the theorem (4) motivates, if the objective function of the optimization problem con-

sidered can be formulated as c(�) in (2) which is also called \energy" due to the physical

interpretation of (2) in many problems of mechanics etc., then the equilibrium points

of the gradient system will coincide with the local minima of the objective function. As

follows from the above discussion, the applicability of gradient systems in optimization

problems is due to the one to one correspondence of the stable equilibria of the gradient

system and the minima of the objective function. This approach to the optimization

can be extended to the (non-gradient but) completely stable dynamical systems since

every trajectory of a completely stable dynamical system ends in one of the equilibrium

points as in all gradient systems. If it is possible to formulate the objective function

such that its minima coincides with the stable equilibrium points of a completely sta-

ble dynamical system, the dynamical system will solve the optimization problem since

the minimum points will be its steady-state solutions. This is done to some extent in

[10] by generalizing gradient systems and forming so called quasi-gradient systems, and

furthermore, as done here, by considering all gradient-like systems in the same context.

It is shown in [10], continuous versions of the methods as steepest descent, Newton,

Branin can be implemented as quasi-gradient systems of the following form by choosing

a suitable positive de�nite R(x) matrix: _x = �R(x)�1 � rc(x). In the sequel, it will

be shown that SLDN [4], which is succesfully used for solving the discrete optimization

problem of maximum clique, constitutes an interesting class of gradient-like systems

which are not gradient and also not quasi-gradient. To do that, �rst a compact form is

presented for SLDN originally proposed in [4] to minimize a quadratic cost so its mini-

mums are seeked after continuous relaxation of variables on unit hypercube. From this

compact form, it will be evident that SLDN has a state equation form with discontin-

uous right-hand side, but still the solutions do exist and are uniquely de�ned as shown

in [4,21]. An alternative ( in a sense more rigorous ) way to the derivation of complete

stability of SLDN in [4] will be given here using La Salle's invariance principle [14].

Since La Salle's invariance principle is derived for dynamical systems with continuous

right-hand sides, an extension to the systems with discontinuous right-hand sides will

be given.

In view of the gradient-like systems as solution methods for optimization problems,

as will be evident by the given compact form, the most important fact about SLDN

is that SLDN is indeed a continuous version of the well-known gradient projection

method of the constrained optimization. This means that SLDN and its variants [18]

can be used not only for the maximum clique problem but also for other constrained

optimization problems such as inde�nite quadratic integer optimization problems and

inde�nite quadratic optimization de�ned over a polytope constraint set, etc.

SLDN is based on the 0-1 quadratic formulation in (1). The cost function E(x) =

f3(x) = xT �Ax�eTx is taken as \energy" hence the gradient-descent dynamics of SLDN

is obtained as _x = �1

2
rE(x) = 1

2
e� �Ax. Also, to handle 0-1 integer constraint within

this continuous dynamics, x 2 f0; 1gn integer constraint is relaxed to yield x 2 [0; 1]n.



Then, the solutions of SLDN are restricted in the closed unit hypercube [4]. Following

this discussion the dynamics of SLDN is derived in [4] as follows:

_xi =

8><
>:

0 if xi = 1 and 1

2
� (�Ax)i � 0

0 if xi = 0 and 1

2
� (�Ax)i � 0

1

2
� (�Ax)i if otherwise

(3)

The above dynamics shows that, as long as the solutions are inside the hypercube,

the trajectories follow the pure gradient descent direction, and that, as the solutions

hit a surface of the hypercube, now the trajectories slide on the surface following the

projected gradient descent direction. This fact explains that SLDN behaves like the

classical gradient projection algorithm of optimization [17]. So, the compact form in-

troduced here is derived incorporating the following projection matrix PIa [20].

PIa = [I�BT
Ia
(BIaB

T
Ia
)�1BIa ]

Where, Ia(x) is the index set of active constraints which is the union of I0 and I1, i.e.,

Ia := I0 [ I1. The disjoint sets I0; I1 indexing the active linear inequality constraints

are de�ned as follows:

I0(x) := fi 2 N j xi = 0 and
1

2
� (�Ax)i < 0g

I1(x) := fi 2 N j xi = 1 and
1

2
� (�Ax)i > 0g

BIa is an jIaj � n dimensional matrix whose j(i)'th row, (BIa)j(i) is de�ned as:

(BIa)j(i) =

(
bT (i) if i 2 I1
�bT (i) if i 2 I0

Here, j(i) 2 f1; 2; :::; jIa jg is an index used for renumbering the active constraints

indexed by i. The j'th row of BIa depends on index i, so the number of rows of BIa is

as much as the number of active constraints. b(i) 2 Rn is de�ned as:

(b(i))k =

(
1 if k = i

0 if k 6= i

Now, the formed projection matrix PIa can be given as follows:

[PIa(x)]ij =

8><
>:
0 i 6= j

1 i = j 2 Ia
0 i = j 2 Ia

It should be noted that, for any active set as Ia, this PIa is idempotent, i.e, PIa =

PIaPIa , nonexpansive and furthermore jjPIa jj � jjxjj. Now the dynamics related to

SLDN given in (3) can be written as follows:

_x = �PIa(x)rE(x) (4)



Eventhough the right-hand side of Equation (4) is discontinuous in x, it is known

[4,21] that, for any initial condition x(0) 2 [0; 1]n, there exists a unique solution which

is continuous, nondi�erentiable but right di�erentiable with respect to time, and also is

kept in the hypercube [0; 1]n. The analysis, which will be given in the sequel, relies on

the right di�erentiability of the solutions. In [21], a model having the same dynamics

with (4) is considered, and it is described to have right di�erentiable solutions. To avoid

repetitions, the characteristics of the solutions of (4) will not be taken into the recon-

sideration. But, the concern of [21] is on the derivation of global asymptotical stability

results which are useless for System (4) possessing multiple equilibria completely stable

dynamics.

This dynamical system is not in the form of gradient system. Also, it is not a

quasi-gradient system since PIa(x) is not a positive de�nite matrix. But still, a dis-

cussion similar to the one given above dealing with applicability of gradient systems

in optimization problems can hold if it can be shown that \energy" function E(x) is

nonincreasing along the trajectories of (4) and equilibria concide with the local minima.

For this purpose, La Salle's invariance principle which is originally given for systems

having continuous right-hand side will be extended here to the systems with discontin-

uous right-hand side. Consider �rst Theorem 5 stating La Salle's invariance principle

for autonomous systems as _x = h(x) with continuously di�erentiable right-hand side

[23].

Theorem 5: If there exists a continuously di�erentiable Lyapunov function V (�) :

Rn ! R1 such that i) the set 
r = fx 2 RnjV (x) � rg is bounded for some r > 0,

ii) V (�) is bounded below over such a set 
r, and iii) _V � 0 8x 2 
r, then any

solution x(t;x0; 0), starting from x0 = x(0) 2 
r, tends to the largest invariant set

contained in S := fx 2 
rj _V (x) = 0g � 
r. 2

The largest invariant set mentioned in Theorem 5 consists of equilibrium points if the

conditions of Theorem 6 [22] are satis�ed.

Theorem 6: The autonomous system _x = h(x) is completely stable, namely the in-

variant set which the trajectories tend to is made up of the equilibrium points if

i) the solutions of the system are bounded, ii) there exists a continuously di�eren-

tiable Lyapunov function V (�) such that _V � 0 8x 2 Rn except for the equilibrium

points where it vanishes. 2

The system given in (4) has only bounded solutions, thus the �rst condition of

Theorem 6 is satis�ed. However, Theorem 6 can not be used to show the complete

stability of (4) due to the discontinuous right-hand side of (4).

The key point in the proofs of Theorems 5-6 is the exploitation of the condition
_V (x) = [rV (x)]Th(x) � 0. This condition together with the other technical assump-

tions implies that the function V (x) is decreasing along trajectories until reaches an

equilibrium point where it takes a constant value. For the system in (4), x is not a

di�erantiable function of time t, special care has to be paid in using the time derivative

of V (�) and the chain rule _V (x) = [rV (x)]T _x. In the sequel, right derivative and the



corresponding chain rule will be used to handle this problem. To handle another patho-

logical case, La Salle's paper [14] used lower right derivative since there, the solutions

were not unique for the considered continuous right-hand sided di�erential equation.

For the state equation (4), it is known [4,21] that the solutions are unique, so to use

lower right derivative is too restrictive. Instead, since the right limit of the right-hand

side of (4) exist for all t, the right derivative 1 will be used. So in Lemma 1, chain rule

will be derived in the sense of right di�erentiability.

Lemma 1 : Consider the functions  (�) : D � [0;1) ! Dg � Rn and g(�) : Dg �

Rn ! R. Let t 2 Int(D ). Assume that g(�) is continuously di�erantiable at  (t),

and  (�) is right di�erantiable at t. Then, g �  is right di�erentiable at t and
d(g� )(t)

dt+
= [r g( )]

T d (t)

dt+
.

Proof :

t 2 Int(D ) implies  (t) 2 int(Dg). Because,  (�) is right continuous due to the

right di�erentiability. Hence, by the de�nition of right derivative,

d(g �  )(t)

dt+
:= lim

�!0+

g( (t +�))� g( (x))

�
:

As g(�) is di�erantiable at  (t), by mean value theorem,

g( (t +�))� g( (t)) = [rg( (�))]T [ (t+�)�  (t)]

for some � 2 [t; t+�]. Then,

lim
�!0+

g( (t +�))� g( (t))

�
= lim

�!0+
[rg(�(�))]T

[ (t +�)�  (t)]

�
:

Since g( (�)) is di�erentiable, it can be written:

lim
�!0+

rg( (�)) = rg( (�)) :

By the assumption of right di�erentiability of  (�),

lim
�!0+

 (t+�)�  (t)

�
=
d (t)

dt+
:

The limits of two sequences exist and the limit of the product sequence also exists,

then this limit is equal to the product of the individual limits. This fact implies

that g �  is right di�erantiable:

d(g �  )(t)

dt+
= [r g( )]

T d (t)

dt+
: 2

So, Lemma 1 provides the needed chain rule as used in Lemma 2.

1
The right derivative of a function x(�) : R ! R

n
is de�ned as

dx(t)

dt+
:= lim�!0+

x(t+�)�x(t)

�
where

�! 0
+

means that � approaches zero through positive values only.



Lemma 2 : Consider the system (4) and the corresponding \energy" function E(x) =

xT �Ax � eTx. Then,
d(E�x)(t)

dt+
� 0 8x 2 [0; 1]n and moreover it is equal to zero i�

x is an equilibrium point.

Proof :

The quadratic energy function E(x) is continuously di�erentiable with respect to x

and the solutions x(t) of (4) are unique and right di�erentiable. So, due to Lemma 1,
d(E�x(t))

dt+
= [rE(x)]T

d(x(t))

dt+
= �[rE(x)]TPIa(x)rE(x). Since PIa(x) is idempotent,

d(E�x(t))

dt+
= �jjr[E(x)]TPIa(x)jj

2 in terms of the Euclidean norm. Now,
d(E�x(t))

dt+

is equal to zero i� the vector PIa(x)rE(x) is equal to zero. This speci�es the

equilibrium points of system (4). 2

Lemmas 1 and 2 provides an extension of Theorem 6 to the considered discontinuous

right-hand sided di�erential equation (4).

Theorem 7 : (Invariance Principle) Consider the autonomous system (4) where the

scalar function E(x) = xT �Ax � eTx. Then, every trajectory that starts in [0; 1]n

ends one of the equilibrium points.

Proof : For x0 := x(0) 2 [0; 1]n, let x(t;x0;0) be the solution starting from x0 .

Due to the de�nition of the gradient projection operator, any such solution of (4)

is bounded and is kept in the closed hypercube [0; 1]n. Since the function E(x) is a

continuous function, then it is bounded below over [0; 1]n. It is known from Lemma

2 that
dE(x(t))

dt+
� 0 8x 2 [0; 1]n. By the de�nition of the right derivative,

dE(x(t))

dt+
� 0

8x 2 [0; 1]n implies E(x(t;x0; 0)) is nonincreasing for all x 2 [0; 1]n. This property

together with the fact that E(x) is bounded below over [0; 1]n yields: E(x(t;x0; 0))

converges to a limit E�, i.e.

lim
t!1

E(x(t;x0; 0)) = E� :

Due to the continuity of E(x), when E(x(t;x0; 0)) goes to E�, x(t;x0; 0) goes to

some constant vector x�. x� is, indeed, in the positive limit set L+ of the trajectory

x(t;x0; 0). Since all sequences fE(x(tn;x0; 0))g
1

n=1 has the same limit E�, then

E(�x) = E� for all �x 2 L+. As known [23], the positive limit set L+ is an invariant

set, i.e. x(t; �x; 0) 2 L+ for all �x 2 L+. Hence, E(x) becomes constant along any

trajectory starting at a point in L+:

dE(x(t; �x; 0))

dt+
= 0 8�x 2 L+ :

Now, by Lemma 2, the positive limit set L+ of the trajectory x(t;x0; 0) must consist

of equilibrium points which are necessarily unique. 2

Theorem 7 shows that the system (4) has completely stable dynamics, meaning

any trajectory of it converges to an equilibrium point. These equilibrium points are,

indeed, local minima, maxima and saddle points of the quadratic energy function E(x

over the constraint set [0; 1]n [4]. So, any stable equilibrium point, which all trajectories

starting at points in some neighborhood constrained to [0; 1]n converge to, corresponds

to a continuous local minimum point of E(x. It is proved in [4] that these continuous



minima coincide with the discrete minima of E(x under the hypercube constraint [0; 1]n.

Therefore, calculating the steady-state solutions of the di�erential equation system (4)

with E(x) = xT �Ax � eTx is equivalent to �nding maximal cliques of a graph given

with the adjacency matrix A.

4 Experimental Results

Performance of di�erent clique �nding methods were compared in Table 1 for random

graphs of di�erent vertex size and densities for SLDN, CHN, CNN, RLN. Average

maximum cliques where the averages is taken over the test graphs generated with

the same characteristics, i.e., the vertex size and densities, is considered as a primary

performance measure. Another performance measure is also considered, in which the

averages are computed for the same test set but taking into account only the best results

obtained on each graph in 5 and 10 independent runs with random initial conditions.

This measure shows the ability of the methods to �nd di�erent search directions when it

is started from di�erent initial point. The results are summarized in Table 2. Since the

RLN starts always with the same initial states results for this method are not included.

Table 1. Average Cliques Sizes found for 100- and 500-graphs with density of 0.25, 0.50 and

0.75.

Overall Average

jV j Density SLDN CHN CNN RLN

0.25 4.83 4.48 4.176 5.16

100 0.5 8.07 7.38 7.096 8.48

0.75 15.05 13.87 13.562 16.31

0.25 5.8 5.617 5.155 6.02

500 0.5 10.387 9.605 9.186 10.28

0.75 21.022 19.443 19.318 -

Table 2. Averages over Bests among 5 runs and Bests among 10 runs for a 100- and 500- graphs

with density of 0.25, 0.50 and 0.75.

Av. over Bests among 5 Runs Av. over Bests among 10 Runs

jV j Density SLDN CHN CNN SLDN CHN CNN

0.25 5.21 4.58 4.84 5.30 4.62 5.14

100 0.50 8.47 7.59 8.07 8.60 7.66 8.32

0.75 15.63 14.24 14.69 15.76 14.40 15.18

0.25 6.476 6.169 6.285 6.80 6.38 6.551

500 0.50 11.34 10.26 10.74 11.83 10.41 11.18

0.75 22.437 20.593 21.67 23.00 20.875 22.20



5 Conclusion

Maximum clique problem which is an NP-hard discrete optimization problem is re-

viewed here. Some basic formulations and methods used in solving this problem are

summarized, especially with emphasize on continuous methods. The main contribution

of this work is given in Section 3. In this section, gradient and quasi-gradient systems

are discussed, and it is shown that, even a system which has discontinuous right-hand

side and hence can not be classi�ed as both of these, still a discussion similar to the

above mentioned systems' optimizing dynamics can be given. This discussion is carried

on for a recently proposed dynamic optimizer, namely the saturated linear dynamical

network, and to show gradient-like (more precisely, completely stable) dynamics of such

systems La Salle's invariance principle is extended to the systems with discontinuous

right-hand side. Experimental results for continuous methods, namely SLDN, CHN,

CNN and RLN are given. It is concluded that gradient-like dynamical systems as con-

tinuous solution methods can be applied to the quadratic formulation of the maximum

clique problem with o�ering good approximations.
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