Liveness of Continuous Weighted Marked Graphs

I. Demongodin, M. Mostefaoui, N. Sauer
IRCyN - UMR CNRS n ${ }^{\circ} 6597$, Ecole des Mines de Nantes
Department of Automatic Control and Production systems 4, rue Alfred Kastler - BP 20 722-44 307 Nantes Cedex 03, FRANCE

Abstract

For modelling and analysis of production systems as batch or high throughput systems, Petri Nets are commonly used with a concept of flow. Furthermore, for performance evaluation and performance control, discrete Petri Nets (PN) with structures such that marked graphs (also called event graphs) have produced a great interest by their analysis facilities. These marked graphs correspond to a net structure where a place has exactly one input and one output transition and where weights on arcs are equal to one. Thus, they are powerful enough to model and analyse cyclic systems.

But they are several problems associated with the introduction of weighted larger than one. These weights may be introduced to reduce the size of the model. Consequently, weighted marked graphs permit to model in a compact structure, batch systems, assembly and disassembly systems, where transformations on product appear.

However, when the discrete PN contains many tokens, the number of reachable states explodes. One way to reduce the phenomena, is the use of continuous PN. In this continuous model [1,4,5], the marking of place is a non-negative real number, introducing the notion of product flow in tank for instance. Notion of time is represented on transition as maximal firing speed. One way to determine structural properties such that liveness (assuring the non deadlocked behaviour), is to construct the evolution graph. In this graph, a node represents the instantaneous firing speed vector. This vector is constant over a certain period, since evolutions of the markings are linear time functions.

Nevertheless, when the structure of the PN is a strongly connected marked graph, the liveness of a continuous PN can be established by the study of its directed circuits. But to our knowledge, no work has been done when weights are added on arcs.

The present paper extends previous works [3,5,10] for continuous weighted marked graphs. By the notion of loop gain, we establish the necessary and sufficient conditions for the liveness of a continuous circuit. For specific initial conditions on marking, the exact values of final instantaneous speeds are given.
Key-Words: Continuous Petri nets - Weighted marked graphs - Manufacturing systems - Hybrid systems Structural analysis - Liveness - Performance evaluation - Performance control.
CSCC'99 Proceedings: - Pages 2640-2650

1 Introduction

Performance control or performance evaluation of batch processes or high throughput production systems pose difficult issues because their representation deals with continuous and discrete models. At the physical level, these processes are usually considered with a fluid point of view. This flow can be characterised by a real number expressing the amount of material.

Relative to Petri net (PN) theory, discrete PNs [9] have generated wide interest for the design and operation of manufacturing systems, while continuous PNs have found a great importance for the modelling and analysis of fluid processes [6]. An other advantage of continuous PNs is that every
property of a discrete PN (DPN), deduced from the fundamental equation, can be transposed to a continuous PN (CPN). In particular, results for Place-invariants and Transition-invariants are similar for a DPN and for a CPN [1]. But it seams that concepts of liveness, boundedness and dead lock-freeness, are quite equivalent for continuous and discrete PN. Nevertheless to determine these basic structural properties without using simulation or evolution graphs, few works have been done.

By restricting the approach to structure of marked directed graphs, Commoner and al [3] prove that "a marking is live if and only if the token count of every directed circuit is positive" and that "a marking which is live remains live after firing". In terms of Continuous Petri net, the former
proposition means that "a marking is live if and only if every ordinary (elementary) circuit contains at least one place with a positive marking". The latter proposition means, "every transition which is enabled at a certain time, stays enabled whatever the future evolution". Consequently for a continuous non weighted marked graph, David and Alla [5] deduce conditions to reach the final steady state and give the exact values of the final instantaneous firing speeds.

Unfortunately, no works have been done for continuous weighted marked graphs and only few for discrete weighted marked graphs [10]. In this paper, we demonstrate the liveness of continuous weighted marked graph under loop gain conditions. This property on sampled structure allows to represent permanent behaviour of cyclic systems and characterises the steady state.

The primary section of this paper is dedicated to some recalls on continuous Petri nets. Section 3 illustrates, through of an example, the liveness of a continuous weighted circuit, gives definitions of gains and basic notations. Section 4 presents fundamental properties on continuous paths and defines conditions for the liveness of continuous circuits. In case of neutral circuits, exact values of final firing speeds are established. Followed by conclusions, last section generalises the conditions of liveness for continuous weighted marked graphs.

2 Background on Continuous Petri nets

We assume that the reader is familiar with the Petri nets paradigm (for more details, see [5, 8]). Since all continuous Petri nets considered in this paper have the characteristic of constant speeds, this adjective may be implicit.

Continuous Petri nets [4] allow the modelling of some continuous systems [6]. The marking of places is a real number and the firing of transitions is a piecewise constant function.

Definition 1: A timed Continuous Petri net (CPN) is a sextuple $C=\left(P, T\right.$, Pre, Post, $\left.M_{o}, \Phi\right)$ such that: P is a finite set of places and T is a finite set of transitions,
Pre, Post: PxT $\rightarrow \mathfrak{R}^{+}$are input and output incidence mappings which associate to each arc a non negative real number,
M_{o} is the initial marking which takes its value in the set of non-negative real numbers,
$\Phi: T \rightarrow \mathfrak{R}^{+}$, the application which associates at each transition a non negative real number, named maximal firing speed Φ_{j} (also called maximal firing flow).

Notations:

- $m_{i}(t)$ is the marking of place $\mathrm{P}_{\mathrm{i}}, \mathrm{m}_{\mathrm{i}}(\mathrm{t})=\mathrm{m}\left(\mathrm{P}_{\mathrm{i}}\right)(\mathrm{t})$, and $M(t)$ is the marking of the Petri net (vector of markings), at time t .
- m_{i}^{0} is the initial marking of the place P_{i} (at the initial date t_{0}), $\mathrm{m}_{\mathrm{i}}^{0}=\mathrm{m}_{\mathrm{i}}\left(\mathrm{t}_{0}\right)$, and M_{0} is the initial marking of the CPN.
- ${ }^{\circ} T_{j}$ and T_{j}° (resp. ${ }^{\circ} P_{i}$ and $P_{i}{ }^{\circ}$) are sets of the input and output places (resp. transitions) of the transition T_{j} (resp. place P_{i})

Before the presentation of enabling rules of a CPN, we first introduce the specific concept of a fed continuous place, which does not exist in discrete PN. An empty place can be supplied by an input transition, which is enabled. Thus, as a flow can pass through an unmarked continuous place, this place can deliver a flow to its output transitions.

Consequently, transition T_{j} is enabled at time t if and only if all its input places P_{i} satisfy at least one of the following conditions :

- $\mathrm{m}_{\mathrm{i}}(\mathrm{t})>0$.
- P_{i} is fed.

If all input places of T_{j} satisfy the first condition, i.e. they have a not null marking, T_{j} is called strongly enabled.
If some of input places are fed, T_{j} is called weakly enabled.
Finally, transition T_{j} is not enabled if one of its input empty places is not fed.

To represent the dynamic behaviour of a CPN, an instantaneous firing speed $\varphi_{j}(t)$ is associated with each transition T_{j}. This instantaneous firing speed is a piecewise constant function. Transitions are fired with this real speed which must be lower than the maximal one. So at any time, $\varphi_{j}(t) \leq \Phi_{j}$.

At time t :

- If T_{j} is a strongly enabled transition then its instantaneous firing speed is equal to its maximal firing speed.

$$
\begin{equation*}
\varphi_{\mathrm{j}}(\mathrm{t})=\Phi_{\mathrm{j}} \tag{1}
\end{equation*}
$$

- If Tj is a weakly enabled transition then its instantaneous firing speed is given by:

$$
\begin{equation*}
\varphi_{\mathrm{j}}(\mathrm{t})=\min \left[\Phi_{\mathrm{j}}, \min _{\mathrm{i} / \mathrm{Pi} \in^{\circ} \mathrm{Tj}_{\mathrm{j}}}\left(\mathrm{~B}_{\mathrm{i}}(\mathrm{t})+\varphi_{\mathrm{j}}(\mathrm{t})\right)\right] \tag{2}
\end{equation*}
$$

where $B_{i}(\mathrm{t})$ is the dynamic balance of place P_{i}. More precisely, $B_{i}(\mathrm{t})$ represents the variation (increasing or decreasing) of the marking $m_{i}(\mathrm{t})$ when place P_{i} has an input or/and output flow.
The dynamic balance of place P_{i} is equal to :

$$
\begin{equation*}
B_{i}(t)=\sum_{k=1}^{n} \operatorname{Post}\left(P_{i}, T_{k}\right) \cdot \varphi_{k}(t)-\sum_{k=1}^{n} \operatorname{Pre}\left(P_{i}, T_{k}\right) \cdot \varphi_{k}(t) \tag{3}
\end{equation*}
$$

Remarks:

1) $B_{i}(t)>0 \Rightarrow$ the marking of place P_{i} increases
2) $B_{i}(t)<0 \Rightarrow$ the marking of place P_{i} decreases
$B_{i}(t)$ can not be negative if $m_{i}(\mathrm{t})=0$. This condition guaranties the marking to be a non negative number.
3) $B_{i}(t)=0 \Rightarrow$ the marking of place P_{i} is stable $B(t)$ denotes the dynamic balance vector composed of each dynamic balance $B_{i}(t)$ of places.

As a result, instantaneous firing speeds depend on both, the dynamic balance and the state of places (marked or empty). At a fixed date, a change of the speed vector will occur if there are strictly negative dynamic balances at this date, meaning that some markings decreases. So, when the marking of a place becomes null, an event occurs, the new dynamic balance $B(t)$ is calculated and a new instantaneous firing speeds vector $\varphi(t)$ is determined. Consequently, in a continuous Petri net, if each place has a non negative dynamic balance, this characterised state is the steady state (called also permanent state). More details on algorithms for computing the instantaneous firing of transitions can be found in [4] but the dynamic principle will be illustrated by an example in the next section.

Thanks to Commoner and al. [3], it is well known that a Petri net is live if and only if every transition can ultimately occur from any reachable marking But there are several important problems associated with the liveness and speeds determination of a continuous PN. To avoid conflict problems, we restrict our approach to PN structure as weighted marked graphs (also called weighted T-graphs or weighted event graphs). Continuous weighted marked graphs correspond to a Petri net where each place has exactly one input and one output transition.

For reasons of better handling, we first study the liveness of a continuous weighted elementary circuit (an elementary circuit contains each node (place or transition) at most one time). Lastly, established conditions will be generalised for continuous weighted marked graph, as strongly connected graph can be decomposed into elementary circuits.

3 Basic definitions on weighted circuits

This section begins with an intuitive and informal presentation of liveness, illustrated by an example. Next, we define basic notations and definitions that are going to be used and we study some properties on continuous paths.

3.1 Intuitive presentation

The CPN given in figure 1 models a manufacturing line is composed of four machines separated by intermediary buffers with infinite capacity.

Fig. 1 : Continuous elementary circuit of a production system

Machine M1 (transition T_{1}) with a maximal rate of 5 batches per second, splits one batch to 20 identical components and puts them in buffer S1 (place P_{1}). Machine M2 (transition T_{2}), with a maximal rate of 200 components per second puts its outgoing parts in buffer S2. Machine M3 (illustrated by T_{3}) assembles 20 components from stock S 2 in 10 batches. With a maximal throughput of 1 transformation per second, M3 puts then 10 batches in buffer S 3 (place P_{3}) for each transformation. Finally, at a maximal speed of 4 batches per second, outgoing pieces of machine M4 (transition T_{4}) finish in buffer S 4 (modelled by P_{4}). This last buffer is also the input buffer of M1. This manufacturing system is cyclic and contains initially 30 batches in buffer S4.

At the initial date $\mathrm{t}_{0}=0$ second, buffer S 4 is non empty so M1 operates at its maximal speed (5 batches $/ \mathrm{sec}$.). A flow of $20 * 5=100$ components/sec. arrives through buffer S1 in front of machine M2, which has its maximal speed higher and equal to 200 . So, M2 is not saturated and its instantaneous rate is 100 components/sec. Thus, buffer S1 stays empty. In the same time, a flow of 100 components/sec. fills buffer S2. Next, 20 components from S 2 are grouped into 10 batches by machine M3. Since M3 has a maximal rate of 1 transformation $/ \mathrm{sec}$., it can not process a flow of $100 / 20=5$ transformations $/ \mathrm{sec}$. So, machine M3 is saturated and buffer S2 is filling up. Machine M4 receives a flow equal to 10 batches $/ \mathrm{sec}$. Since its maximal rate is 4 , M4 is saturated and buffer S 3 is filling up too. Finally, buffer S 4 receives an input flow equal to 4 while its output flow is equal to 5 . So the number of batches in buffer S4 decreases. As shown on figure 2, at the initial date, the dynamic balance of P_{4} is negative, while dynamic balances of $\mathrm{P}_{1}, \mathrm{P}_{2}$, and P3 are positive or null. Finally, the instantaneous firing speed vector is $\varphi(\mathrm{t}=0 \mathrm{~s})=(5,100,1,4)$.

After a delay of 30 seconds, buffer S 4 is empty (marking of P_{4} equals zero), and buffers S1, S2 and S3 contain respectively 0,2400 and 180 parts. At this date $\mathrm{t}=30 \mathrm{sec}$., M3 and M4 are always saturated, transitions T_{3} and T_{4} are strongly enabled, thus their instantaneous firing speeds are, respectively, 1 and 4. Machine M1 will receive batches through buffer $\mathrm{S} 4\left(\mathrm{P}_{4}\right.$ is fed), with an instantaneous rate imposed by M4 (lower than its maximal one). So instantaneous rate of M1 is equal to 4 batches/sec. As buffer $S 1$ is empty (but place P_{1} is fed), machine M2 has a throughput of $20 * 4=80$ components/sec. Lastly, at date 30 second, the dynamic balances of P_{4} and P_{1} are null (see figure 2), while they are strictly positive for P_{2} and P_{3}, and the instantaneous firing speed vector is equal to $\varphi(\mathrm{t}=30)=(4,80,1,4)$.
Since this state is characterised only by positive or null dynamic balances, we reach the final steady state (no event will occur). So, the throughputs of machines remain constant $(4,80,1,4)$, the number of parts in the buffers S 2 , S3 increases while in buffers S1, S4 the number of part remains null. The permanent behaviour is reached and the circuit is live.

Fig 2 : Evolution graph for one circuit
This example illustrates that every continuous elementary circuit which contains at least one non empty place and a positive loop gain (see definition 3) is live and reaches the permanent steady state.

3.2 Basic notations and definitions

For an elementary circuit composed of n places and n transitions, $\gamma=\left\langle\mathrm{T}_{1}, \mathrm{P}_{1}, \mathrm{~T}_{2}, \mathrm{P}_{2}, \ldots, \mathrm{~T}_{\mathrm{n}}, \mathrm{P}_{\mathrm{n}}\right\rangle$, we use the following notations:

- $\forall \mathrm{i}, w_{i}=\operatorname{Post}\left(\mathrm{P}_{\mathrm{i}}, \mathrm{T}_{\mathrm{i}}\right)$ is the weight of the input arc of the place P_{i}.
- $\forall \mathrm{i} \neq \mathrm{n}, v_{i}=\operatorname{Pre}\left(\mathrm{P}_{\mathrm{i}}, \mathrm{T}_{\mathrm{i}+1}\right)$ is the weight of the output arc of the place P_{i}.
- For $\mathrm{i}=\mathrm{n}, v_{n}=\operatorname{Pre}\left(\mathrm{P}_{\mathrm{n}}, \mathrm{T}_{1}\right)$ is the weight of the output arc of the place P_{n}.

Fig. 3 Weighted elementary circuit.
Definition 2: We define the gain of a directed path from a transition T_{k} to a transition T_{j} by:

$$
\begin{equation*}
G_{k}^{j}=\prod_{i=k}^{j-1} \frac{w_{i}}{v_{i}} \tag{4}
\end{equation*}
$$

If the first index is greater than the second index (i.e. $k>j-1$), the index i goes from the first index k to n and continues from 1 to the second index $\mathrm{j}-1$.
For example, the gain of the path from T_{7} to the transition T_{5} is given by :

$$
G_{7}^{5}=\prod_{i=7}^{4} \frac{w_{i}}{v_{i}}=\frac{w_{7}}{v_{7}} \ldots \cdot \frac{w_{n}}{v_{n}} \cdot \frac{w_{1}}{v_{1}} \ldots \frac{w_{4}}{v_{4}}
$$

Remark: In the following, for all functions using index (such that Min, Π), if the first index k is greater than the second index j , the index i goes from the first index k to n and continues from 1 to the second index j . Likewise, for an elementary circuit or a path, when we arrive to place P_{n}, we continue from transition T_{1}.

Definition 3: The gain G of an elementary circuit γ

 (also called loop gain of γ) is defined by:$$
\begin{equation*}
G(\gamma)=\prod_{i=1}^{n} \frac{w i}{v i} \tag{5}
\end{equation*}
$$

In $[2,10]$, each elementary circuit can be classified in three cases, depending on the value of its gain:

1. $G(\gamma)=1$, the circuit is neutral.
2. $G(\gamma)<1$, the circuit is absorbing.
3. $G(\gamma)>1$, the circuit is generating.

4 Liveness of elementary continuous circuits

This part studies the steady state of a continuous elementary circuit with weights on arcs. Firstly, we prove some properties on weighted continuous paths and study the dynamic behaviour. Next, by using these properties, necessary and sufficient conditions for liveness of continuous circuits are defined. Finally, the theorem of liveness for neutral circuit (under marking assumptions) determines instantaneous firing speed expressions for the steady state.

4.1 Dynamic of continuous weighted paths

With the above notations, in a continuous weighted circuit, at time t, the dynamic balance of a place P_{i} (eq. 3), is now expressed as follow:

$$
\begin{equation*}
B_{i}(t)=-v_{i} \cdot \varphi_{i+1}(t)+w_{i} \cdot \varphi_{i}(t) \tag{6}
\end{equation*}
$$

For a weakly enabled transition T_{j}, its instantaneous firing speed at time t can be deduced from eq. (2):
$\varphi_{j}(t)=\min \left(\Phi_{j},-v_{j-1} \cdot \varphi_{j}(t)+w_{j-1} \cdot \varphi_{j-1}(t)+\varphi_{j}(t)\right)$.
If $\varphi_{j}(\mathrm{t})$ is equal to the second term,

$$
\varphi_{j}(t)=-v_{j-1} \cdot \varphi_{j}(t)+w_{j-1} \cdot \varphi_{j-1}(t)+\varphi_{j}(t)
$$

we can easily deduce: $\varphi_{j}(t)=\frac{w_{j-1}}{v_{j-1}} \cdot \varphi_{j-1}(t)$.
By including the second possibility, $\varphi_{j}(\mathrm{t})=\Phi_{\mathrm{j}}$, the instantaneous firing speed of a weakly enabled transition T_{j} is:

$$
\begin{equation*}
\varphi_{j}(t)=\min \left(\Phi_{j}, \frac{w_{j-1}}{v_{j-1}} \cdot \varphi_{j-1}(t)\right) \tag{7}
\end{equation*}
$$

With these above equations, four properties are now established for a path. The first one gives the instantaneous firing speed of transitions, for a onemarked path (a path with only the first place marked). The property 2 provides, for a two-marked path (a path with the first place and the last place marked), a superior bound of instantaneous firing speeds and a condition to have a non positive dynamic balance for the last place. Property 3 extends some results of the second property to the case of a multi-marked path. Finally, in addition to property 1 , property 4 analyses the dynamic behaviour, for a one-marked path.

Property 1: Let a continuous path $\rho=\left\langle\mathrm{P}_{\mathrm{i}}, \mathrm{T}_{\mathrm{i}+1}, \mathrm{P}_{\mathrm{i}+1}\right.$, $\ldots, \mathrm{P}_{\mathrm{q}-1}, \mathrm{~T}_{\mathrm{q}}>$, such that at time t , place P_{i} is the unique marked place while the other places $P_{k}, k=$ $\mathrm{i}+1, \ldots, \mathrm{q}-1$, are empty. Every transition T_{j}, for $\mathrm{j}=$ $\mathrm{i}+1$ to q , is enabled and has its instantaneous firing speed given by:

$$
\begin{align*}
& \text { for } j=i+1, \varphi_{i+1}(t)=\Phi_{i+1} \tag{8}\\
& \text { for } j=i+2, \ldots, q \\
& \qquad \varphi_{j}(t)=\min \left(\Phi_{j}, \min _{k=i+1}^{j-1}\left(\Phi_{k} \cdot \prod_{p=k}^{j-1} \frac{w_{p}}{v_{p}}\right)\right) \tag{9}
\end{align*}
$$

Expressed with the gain of a path (eq. 6), the last equation is transformed as follow:

$$
\begin{equation*}
\varphi_{j}(t)=\min \left(\Phi_{j}, \min _{k=i+1}^{j-1}\left(\Phi_{k} \cdot G_{k}^{j}\right)\right) \tag{10}
\end{equation*}
$$

Proof: Let us consider a path $\rho=\left\langle\mathrm{P}_{\mathrm{i}}, \mathrm{T}_{\mathrm{i}+1}, \mathrm{P}_{\mathrm{i}+1}, \ldots\right.$, $\mathrm{P}_{\mathrm{q}-1}, \mathrm{~T}_{\mathrm{q}}>$ such that only the place P_{i} is marked (all the others are supposed empty), at time t, i.e. :
$m_{i}(t)=\varepsilon>0$ and $\forall P_{j \neq i} \in \rho, m_{j}(t)=0$.

We are going to prove the formula (9) by recurrence and show that each transition is enabled at time t.

- Transition $\mathrm{T}_{\mathrm{i}+1}$ is strongly enabled since its single input place P_{i} is marked. From equation (1), its instantaneous firing speed is given by :

$$
\begin{equation*}
\varphi_{i+1}(t)=\Phi_{i+l} . \tag{11}
\end{equation*}
$$

- Transition T_{i+2} is weakly enabled since its single input place $P_{i+1}\left(={ }^{\circ} \mathrm{T}_{i+2}\right)$ is empty and fed. As the instantaneous firing speed of transition T_{i+2} is done by equation (7), by replacing the value of the instantaneous firing speed of $\mathrm{T}_{\mathrm{i}+1}$ (eq. 11), the instantaneous firing speed of $\mathrm{T}_{\mathrm{i}+2}$ is:

$$
\begin{equation*}
\varphi_{i+2}(t)=\min \left(\Phi_{i+2}, \frac{w_{i+1}}{v_{i+1}} \cdot \Phi_{i+1}\right) \tag{12}
\end{equation*}
$$

- Transition $\mathrm{T}_{\mathrm{i}+3}$ is also weakly enabled.

By replacing the instantaneous speed of $\mathrm{T}_{\mathrm{i}+2}$ in equation 7 adapted to $\mathrm{T}_{\mathrm{i}+3}$, we deduce:

$$
\begin{equation*}
\varphi_{i+3}(t)=\min \left(\Phi_{i+3}, \frac{w_{i+2}}{v_{i+2}} \cdot \Phi_{i+2}, \frac{w_{i+2}}{v_{i+2}} \frac{w_{i+1}}{v_{i+1}} \cdot \Phi_{i+1}\right) \tag{13}
\end{equation*}
$$

- Now, we assume that the transition T_{j}. is weakly enabled that its instantaneous firing speed is given by formula (9).
Let us prove that this formula is always verified for T_{j+1}.
- Transition $\mathrm{T}_{\mathrm{j}+1}$ is weakly enabled:

Hence,
$\varphi_{j+1}(t)=\min \left(\Phi_{j+1}, \frac{w_{j}}{v_{j}} \cdot \varphi_{j}(t)\right)$,
by including equation (9),
$\varphi_{j+1}(t)=\min \left[\Phi_{j+1}, \frac{w_{j}}{v_{j}} \cdot \min \left(\Phi_{j}, \min _{k=i+1}^{j-1}\left(\Phi_{k} \cdot \prod_{p=k}^{j-1} \frac{w_{p}}{v_{p}}\right)\right)\right]$
in other terms,
$\varphi_{j+1}(t)=\min \left[\Phi_{j+1}, \frac{w_{j}}{v_{j}} \Phi_{j}, \frac{w_{j}}{v_{j}} \min _{k=i+1}^{j-1}\left(\Phi_{k} \cdot \prod_{p=k}^{j-1} \frac{w_{p}}{v_{p}}\right)\right]$
or
$\varphi_{j+1}(t)=\min \left[\Phi_{j+1}, \frac{w_{j}}{v_{j}} \Phi_{j}, \min _{k=i+1}^{j-1}\left(\Phi_{k} \cdot \prod_{p=k}^{j-1} \frac{w_{p}}{v_{p}} \frac{w_{j}}{v_{j}}\right)\right]$
Finally we obtain,
$\boldsymbol{\varphi}_{j+1}(t)=\min \left[\Phi_{j+1}, \min _{k=i+1}^{j}\left(\Phi_{k} \cdot \prod_{p=k}^{j} \frac{w_{p}}{v_{p}}\right)\right]$
As all transitions from T_{j+1} are weakly enabled, we can do this reasoning until last transition T_{q} of the path.

Property 2: Let a continuous path $\rho=<\mathrm{P}_{\mathrm{n}}, \mathrm{T}_{1}, \ldots$, $P_{j-1}, T_{j}, P_{j}, T_{j+1},>$, such that at time t places P_{n} and P_{j} are the unique marked places while the other places $\mathrm{P}_{\mathrm{k}}, \mathrm{k}=1, \ldots, \mathrm{j}-1$, are empty.

- For transitions T_{1} and $\mathrm{T}_{\mathrm{j}+1}: \varphi_{1}(t)=\Phi_{1}$ and $\varphi_{j+1}(t)=\Phi_{j+1}$.
For each transition T_{s} (weakly enabled), $\mathrm{s}=2$ to j , we have:

$$
\begin{equation*}
\varphi_{s}(t) \leq \Phi_{1} \cdot G_{1}^{s} \tag{15}
\end{equation*}
$$

Furthermore, if $\mathrm{B}_{\mathrm{k}}(\mathrm{t})=0$ for $\mathrm{k}=1, \ldots, \mathrm{~s}-1$,

$$
\begin{equation*}
\varphi_{s}(t)=\Phi_{1} \cdot G_{1}^{s} \tag{16}
\end{equation*}
$$

- For the place P_{j},

$$
\begin{equation*}
\text { if } \Phi_{j+1} \geq \Phi_{1} \cdot G_{1}^{j+1} \Rightarrow \mathrm{~B}_{\mathrm{j}}(\mathrm{t}) \leq 0 \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
\text { if } \mathrm{B}_{\mathrm{j}}(\mathrm{t})>0 \Rightarrow \Phi_{j+1}<\Phi_{l} \cdot G_{l}^{j+1} \tag{18}
\end{equation*}
$$

Proof: According to property 1, the instantaneous firing speed of a weakly enabled transition T_{s}, for $\mathrm{s}=2$ to j , equals (see eq. 10):
$\varphi_{s}(t)=\min \left(\Phi_{s}, \min _{k=1}^{s-1}\left(\Phi_{k} \cdot G_{k}^{s}\right)\right)$,
Thus, $\varphi_{s}(t) \leq \Phi_{1} \cdot G_{1}^{s}$, so equation (15) is verified.
Moreover, if every dynamic balance from P_{1} to $\mathrm{P}_{\mathrm{s}-1}$ is null: $B_{k}(t)=w_{k} \cdot \varphi_{k}(t)-v_{k} \cdot \varphi_{k+1}(t)=0 \quad(\mathrm{k}=1$ to $\mathrm{s}-1)$, the instantaneous firing speed of the input transitions (weakly enabled) is: $\varphi_{k+1}(t)=\varphi_{k}(t) \frac{w_{k}}{v_{k}}$
Hence, by recurrence, we deduce:
$\varphi_{s}(t)=\varphi_{s-1}(t) \frac{w_{s-1}}{v_{s-1}}=\ldots=\varphi_{1}(t) \frac{w_{1}}{v_{1}} \ldots \frac{w_{s-1}}{v_{s-1}}=\varphi_{1}(t) \cdot G_{1}^{s-1}$
As transition T_{1} is strongly enabled, c, we obtain equation (16): $\varphi_{s}(t)=\Phi_{1} \cdot G_{1}^{s}$
Finally, the output transition of the last marked place P_{j} of ρ, is strongly enabled, so: $\varphi_{j+1}(t)=\Phi_{j+1}$. From equation (15) applied to $\mathrm{T}_{\mathrm{j}}, \varphi_{j}(t) \leq \Phi_{1} \cdot G_{1}^{j}$,
then $B_{j}(t)=w_{j} \cdot \varphi_{j}(t)-v_{j} \cdot \varphi_{j+1}(t) \leq w_{j} \cdot \Phi_{1} G_{1}^{j}-v_{j} \cdot \Phi_{j+1}$

* if $\Phi_{j+1} \geq \Phi_{1} G_{1}^{j} \cdot \frac{w_{j}}{v_{j}}\left(\right.$ or $\left.\Phi_{j+1} \geq \Phi_{1} G_{1}^{j+1}\right)$ then $\mathrm{B}_{\mathrm{j}}(\mathrm{t}) \leq 0$
*if $\mathrm{B}_{\mathrm{j}}(\mathrm{t})>0$ then $\Phi_{j+1}<\Phi_{1} \cdot G_{I}^{j+1}$

Property 3: Let a continuous path $\rho=\left\langle\mathrm{P}_{\mathrm{n}}, \mathrm{T}_{1}, \ldots\right.$, $P_{j-1}, T_{j}, P_{j}>$ such that at time t, places P_{n} and P_{j} are marked, and there are some marked places $\mathrm{P}_{\mathrm{i}}, \mathrm{i}=1$, $\ldots, j-1$, with a strictly dynamic balance, $B_{i}(t)>0$, Then, for each transition T_{s}, for $s=2$ to j, its instantaneous firing speed is bounded by:

$$
\begin{align*}
& \varphi_{s}(t) \leq \Phi_{1} \cdot G_{1}^{s} \tag{19}\\
& \text { if } \mathrm{B}_{\mathrm{s}}(\mathrm{t})>0 \Rightarrow \Phi_{s}<\Phi_{l} \cdot G_{l}^{s}
\end{align*}
$$

Proof: We suppose that path ρ contains, at time t, q marked places. Let $c(i)$ the $i^{\text {ih }}$ marked place in the path ρ with $c(1)=n$ and $c(q)=j$.
We can decompose path ρ in ($\mathrm{q}-1$) paths $\rho_{\mathrm{i}}=\left\langle\mathrm{P}_{\mathrm{c}(\mathrm{i})}\right.$, $\mathrm{T}_{\mathrm{c}(\mathrm{i})+1}, \ldots, \mathrm{P}_{\mathrm{c}(\mathrm{i}+1)-1}, \mathrm{~T}_{\mathrm{c}(\mathrm{i}+1)}>$ which have only their first place marked with strictly positive dynamic balances (other places are empty).

- From property 2 (eq. (15) and (18)), applied to path $\rho_{1} \cup\left\{\mathrm{P}_{\mathrm{c}(2)}\right\}$, we have:
$\varphi_{I}(t)=\Phi_{1}$
$\varphi_{s}(t) \leq \Phi_{1} \cdot G_{1}^{s}$ for $\mathrm{s}=\mathrm{c}(1)+2, \ldots, \mathrm{c}(2)$,
and $\varphi_{c(2)+l}(t)=\Phi_{c(2)+l}<\Phi_{l} \cdot G_{l}^{c(2)+l}$
- For the path $\rho_{2} \cup\left\{\mathrm{P}_{\mathrm{c}(3)}\right\}$, property 2 implies:
$\varphi_{c(3)+1}(t)=\Phi_{c(3)+1}<\Phi_{1} \cdot G_{I}^{c(3)+l}$, and
$\varphi_{s}(t) \leq \Phi_{c(2)+1} \cdot G_{c(2)+1}^{s}$ for $\mathrm{s}=\mathrm{c}(2)+2$ to $\mathrm{c}(3)$.
By including equation (20)

$$
\varphi_{s}(t) \leq \Phi_{c(2)+1} \cdot G_{c(2)+1}^{s}<\Phi_{1} \cdot G_{1}^{c(2)+1} \cdot G_{c(2)+1}^{s}=\Phi_{1} \cdot G_{1}^{s}
$$

And so on for all paths ρ_{i}.
By the same reasoning for every transition T_{s} of the path ρ at time t , we obtain the following condition:
$\varphi_{s}(t) \leq \Phi_{l} \cdot G_{I}^{s}$

Property 4: Let a continuous path $\rho=\left\langle\mathrm{P}_{\mathrm{i}}, \mathrm{T}_{\mathrm{i}+1}, \mathrm{P}_{\mathrm{i}+1}\right.$, $\ldots, P_{q-1}, T_{q}>$, such that at time t_{0}, place P_{i} is the unique marked place while the other places $\mathrm{P}_{\mathrm{k}}, \mathrm{k}=$ $\mathrm{i}+1, \ldots, \mathrm{q}-1$, are empty.

- If at time t_{0} the dynamic balance of an empty place P_{k} is null, it will be stay null whatever the future evolution.
At time $\mathrm{t}_{0}, \mathrm{~B}_{\mathrm{k}}\left(\mathrm{t}_{\mathrm{o}}\right)=0$ then at time $\mathrm{t}>\mathrm{t}_{0}, \mathrm{~B}_{\mathrm{k}}(\mathrm{t})=0$.
- If at time t_{0} the dynamic balance of an empty place P_{k}, is positive, whatever the future evolution, $\Phi_{k+1}<\Phi_{l} \cdot G_{I}^{k+1}$ will be verified for transition $\mathrm{T}_{\mathrm{k}+1}$.
At time $\mathrm{t}_{0}, \mathrm{~B}_{\mathrm{k}}\left(\mathrm{t}_{0}\right)>0$ then at time $\mathrm{t}>\mathrm{t}_{0}$, $\Phi_{k+1}<\Phi_{l} \cdot G_{l}^{k+1}$ whatever the future value of $\mathrm{B}_{\mathrm{k}}(\mathrm{t})$.
- If at time t_{0} the dynamic balance of two empty places P_{k} and $P_{q}\left(P_{k}\right.$ is upstream to P_{q}) are positive, and the dynamic balance of all the places between them are null, then dynamic balance of P_{q} remains positive as long as P_{k} is marked.
At time $\mathrm{t}_{0}, \mathrm{~B}_{\mathrm{k}}\left(\mathrm{t}_{0}\right)>0$ and $\mathrm{B}_{\mathrm{q}}\left(\mathrm{t}_{0}\right)>0$, if at time $\mathrm{t}>\mathrm{t}_{0}$ we have $m_{k}(t)>0$ then $B_{q}(t)>0$.

Proof:

- Firstly, we are going to prove that for all empty places, between T_{i+1} and T_{q}, which have a null dynamic balance at time t_{0}, their dynamic
balance stays null, whatever future time $t>t_{0}$. At time t_{0}, the place P_{i+1} is empty ($\left.\mathrm{B}_{\mathrm{i}+1}\left(\mathrm{t}_{0}\right)=0\right)$, and $\mathrm{T}_{\mathrm{i}+1}$ is strongly enabled $\varphi_{i+1}(t)=\Phi_{i+1}$. According to equation (7) for transition $\mathrm{T}_{\mathrm{i}+2}$:
$\varphi_{i+2}\left(t_{0}\right)=\min \left(\Phi_{i+2}, \frac{w_{i+1}}{v_{i+1}} \Phi_{i+1}\right)$
As $B_{i+1}\left(t_{0}\right)=0$, from equation (6) we deduce that:
$\varphi_{i+2}\left(t_{0}\right)=\frac{w_{i+1}}{v_{i+1}} . \Phi_{i+1} \leq \Phi_{i+2}$
Therefore, so long as place P_{i} is marked, for $t>t_{0}$, we have $\varphi_{i+2}(t)=\frac{w_{i+1}}{v_{i+1}} . \Phi_{i+1}$
and $B_{i+1}(t)=w_{i+1} \cdot \Phi_{i+1}-v_{i+1} \cdot \frac{w_{i+1}}{v_{i+1}} \Phi_{i+1}=0$.
At time t_{0}, the place P_{i+2} is empty $\left(B_{i+2}\left(t_{0}\right)=0\right)$, and $\mathrm{T}_{\mathrm{i}+1}$ is strongly enabled $\varphi_{i+1}(t)=\Phi_{i+1}$. According to equation (7) for transition $\mathrm{T}_{\mathrm{i}+3}$:
$\varphi_{i+3}\left(t_{0}\right)=\min \left(\Phi_{i+3}, \frac{w_{i+2}}{v_{i+2}} \cdot \varphi_{i+2}\left(t_{0}\right)\right)$.
As $B_{i+2}\left(t_{0}\right)=0$, from equation (6) we deduce that: $\varphi_{i+3}\left(t_{0}\right)=\frac{w_{i+2}}{v_{i+2}} \cdot \varphi_{i+2}\left(t_{0}\right)=\frac{w_{i+2}}{v_{i+2}} \frac{w_{i+1}}{v_{i+1}} \cdot \Phi_{i+1} \leq \Phi_{i+3}$
Therefore, so far as place P_{i} is marked, for $t>t_{0}$, we have $\varphi_{i+3}(t)=\frac{w_{i+2}}{v_{i+2}} \frac{w_{i+1}}{v_{i+1}} \cdot \Phi_{i+1}=G_{i+1}^{i+3} \cdot \Phi_{i+1} \leq \Phi_{i+3}$ and

$$
\begin{aligned}
B_{i+2}(t) & =w_{i+2} \cdot \varphi_{i+2}(t)-v_{i+2} \cdot G_{i+1}^{i+3} \Phi_{i+1} \\
& =w_{i+2} \cdot G_{i+1}^{i+2} \Phi_{i+1}-v_{i+2} \cdot G_{i+1}^{i+3} \Phi_{i+1}=0
\end{aligned}
$$

By the same reasoning if the dynamic balance of an empty place P_{k} (between P_{i} and P_{q}) is null, it will be stay null whatever the future evolution.

- To prove the second part of this property

Applying equation 18 of property 2 for place P_{k}, at t_{0} we obtain $\Phi_{k+l}<\Phi_{l} \cdot G_{l}^{k+1}$.
Since this equation is independent of time its verifies for every time $t>t_{0}$.

- Let us prove the third part of the property:

At $t>t_{0}$, from the first part of this property, $\mathrm{B}_{\mathrm{i}}(\mathrm{t})$ $=0$ for all places P_{i} between P_{k} and P_{q}. According equation (16) to place P_{q} we have: $\varphi_{q}(t)=\Phi_{k+1} \cdot G_{k+1}^{q}$ as long as while P_{k} is marked. Since at t_{0} the dynamic balance of P_{q}, is positive, $\Phi_{q+1}<\Phi_{k+1} \cdot G_{k+1}^{q+1}$ (by property 4).
But from equation (6) we deduced that at $\mathrm{t}>\mathrm{t}_{0}$:
$B_{q}(t)=w_{q} \cdot \Phi_{k+1} \cdot G_{k+1}^{q}-v_{q} \Phi_{q+1}$
so $B_{q}(t)>w_{q} \cdot \Phi_{k+1} \cdot G_{k+1}^{q}-v_{q} \Phi_{k+1} \cdot G_{k+1}^{q+1}=0$
hence this P_{q} place remain positive while P_{k} is marked.

A formal definition of liveness property of a continuous weighted elementary circuit can be now given.

4.2 Liveness of a continuous weighted circuit

In the previous section, dedicated to continuous weighted marked path, we have given limits and exact values of instantaneous firing speeds. In the following, we will prove that liveness property of a continuous weighted circuit depends on the value of the loop gain.

Theorem 1: A continuous weighted elementary circuit is live if and only if it is generating or neutral and has at least one place P_{i} with not null marking ($m_{i}^{0}>0$).

Proof: Let us consider an elementary circuit γ composed of n places and n transitions.
Two cases are distinguished:
Case 1: every place of the circuit is empty, at time t, i.e., $\forall \mathrm{P}_{\mathrm{i}} \in \gamma, \mathrm{m}_{\mathrm{i}}(\mathrm{t})=0$.

Hence all transitions are not enabled. Then the circuit is not live.

Case 2: In the following, we consider the initial marking where exactly one place is marked (all the others are supposed empty). In fact, if the elementary circuit is live in this case, it will be live for all markings greater than this one, and therefore for a marking with several marked places.
There exists, in the circuit $\gamma=\left\langle\mathrm{P}_{\mathrm{n}}, \mathrm{T}_{1}, \mathrm{P}_{1}, \mathrm{~T}_{2}, \mathrm{P}_{2}, \ldots\right.$, $\mathrm{T}_{\mathrm{n}},>$, exactly one marked place (all the others are supposed empty), noted P_{n}, at time t_{0}, i.e.:
$\exists \mathrm{P}_{\mathrm{n}} \in \gamma, / \mathrm{m}_{\mathrm{n}}\left(\mathrm{t}_{0}\right)=\varepsilon>0$ and $\forall \mathrm{P}_{\mathrm{j} \neq \mathrm{i}} \in \gamma, \mathrm{m}_{\mathrm{j}}\left(\mathrm{t}_{0}\right)=0$.
In this case, to prove that an elementary continuous circuit is live, let us prove that every transition is enabled at time t and stays enabled whatever the future evolution.
At time t_{0} : we deduce from property 1 , applied to the circuit with $\mathrm{i}=\mathrm{n}$ and $\mathrm{q}=\mathrm{n}$:
$\varphi_{1}\left(t_{0}\right)=\Phi_{1}$, and
for $j=2, \ldots, n$,

$$
\begin{equation*}
\varphi_{j}\left(t_{0}\right)=\min \left(\Phi_{j}, \min _{k=i+1}^{j-1}\left(\Phi_{k} \cdot G_{k}^{j}\right)\right) \tag{20}
\end{equation*}
$$

Consequently the instantaneous firing speed vector is strictly positive, $\varphi\left(t_{0}\right)>0$, at the initial date.
For the empty places $\mathrm{P}_{\mathrm{j}},\left(\forall \mathrm{P}_{\mathrm{j} \neq \mathrm{i}} \in \gamma, \mathrm{m}_{\mathrm{j}}\left(\mathrm{t}_{0}\right)=0\right)$, by definition (see remark 2 section 2) they can not have a negative balance. Thus, each dynamic balance of an empty place is positive or null.
Consequently, every transition of the circuit is enabled at time t_{0}, and dynamic balances of all places, excepted place P_{n}, are positive or null.

However, at time t_{0}, the dynamic balance of place P_{n} depends on the value of the loop gain $G(\gamma)$.
a) if $\mathrm{G}(\gamma)<1$ (the circuit is absorbing),

* At time t_{0} :

According to equation (15) applied at transition T_{n}
$\varphi_{n}\left(t_{0}\right) \leq \Phi_{l} \cdot G_{l}^{n}$.
From equation (6), $B_{n}\left(t_{0}\right)=-v_{n} \cdot \Phi_{1}+w_{n} \cdot \varphi_{n}\left(t_{0}\right)$.
thus, $B_{n}\left(t_{0}\right) \leq \Phi_{1} .\left(w_{n} G_{l}^{n}-v_{n}\right)$.
As the loop gain is supposed to be strictly inferior to one, we deduce from eq. (5), $G(\gamma)=\frac{w_{n}}{v_{n}} G_{1}^{n}<1$,
thus the dynamic balance of place P_{n} is negative, $\mathrm{B}_{\mathrm{n}}\left(\mathrm{t}_{0}\right)<0$.

In summary, at time t_{0}, for an absorbing continuous circuit $\gamma(\mathrm{G}(\gamma)<1)$:

$$
\begin{aligned}
& \varphi_{\mathrm{j}}\left(\mathrm{t}_{0}\right)>0 \forall \mathrm{~T}_{\mathrm{j}} \in \gamma, \\
& \mathrm{~B}_{\mathrm{n}}\left(\mathrm{t}_{0}\right)<0 \text { for } \mathrm{P}_{\mathrm{n}} \in \gamma \text { with } \mathrm{m}_{\mathrm{n}}\left(\mathrm{t}_{0}\right)>0 \\
& \mathrm{~B}_{\mathrm{j}}\left(\mathrm{t}_{0}\right)>0 \text { or } \mathrm{B}_{\mathrm{j}}\left(\mathrm{t}_{0}\right)=0 \text { for } \mathrm{P}_{\mathrm{j}} \in \gamma, \mathrm{j} \neq \mathrm{n} .
\end{aligned}
$$

In other terms, after t_{0}, the marking of place P_{n} decreases, the marking of downstream places stays null or increases.

We call P_{q} the first place from P_{n}, which has a positive dynamic balance at time t_{0}.
From this initial date t_{0}, the next event will occur when marking of place P_{n} will be equal to zero. We note this instant t^{\prime}.

* Between these two dates [t_{0}, t^{\prime} [:

Between two event dates, all instantaneous firing speeds and all dynamic balances are constant. Then $B_{n}(t)$ is negative for $t_{0} \leq t<t$ '. For places, which have a positive dynamic balance, their marking increases, the others stay empty.

* For time $t \geq t$ ':

At time t ': place P_{n} becomes empty and its dynamic balance will stay null for all $t>t^{\prime}$. It sufficient to apply the first part of property 4 to the path from P_{k} (first upstream marked place to place P_{n} at t^{\prime}) to P_{q} (first downstream marked place to place P_{n} at t^{\prime}.

We decompose at time t^{\prime}, the circuit into onemarked paths, and deduce from property 1 that every transition is enabled (strongly or weakly).
Now, the first place P_{q}, having a positive dynamic balance at time t_{0} is marked.
$B_{q}\left(t^{\prime}\right)=-v_{q} \cdot \Phi_{q+1}+w_{q} \cdot \varphi_{q}(t)$
According to property 3 , for the path $\rho=\left\langle\mathrm{P}_{\mathrm{q}}\right.$, $\mathrm{T}_{\mathrm{q}+1}, \ldots, \mathrm{P}_{\mathrm{q}-1}, \mathrm{~T}_{\mathrm{q}}>$, the instantaneous firing speed of transition T_{q} is limited by: $\varphi_{q}\left(t^{\prime}\right) \leq \Phi_{q+1} \cdot G_{q+1}^{q}$.
So, $B_{q}\left(t^{\prime}\right) \leq \Phi_{q+1} .\left(w_{q} G_{q+1}^{q}-v_{q}\right)$.
With the same reasoning used for the place P_{n} at
time t_{0}, we deduce (as $G(\gamma)<1$) that the dynamic balance of place P_{q} is negative, $\mathrm{B}_{\mathrm{q}}\left(\mathrm{t}^{\prime}\right)<0$ and will stay negative or null whatever the future evolution.
Nevertheless, the positive dynamic balance of other places stays positive.

In summary, at time t ' (and until the next event), for an absorbing continuous circuit γ $(\mathrm{G}(\gamma)<1): \mathrm{m}_{\mathrm{n}}\left(\mathrm{t}^{\prime}\right)=0$
$\varphi_{\mathrm{j}}\left(\mathrm{t}^{\prime}\right)>0 \forall \mathrm{~T}_{\mathrm{j}} \in \gamma$,
$\mathrm{B}_{\mathrm{i}}\left(\mathrm{t}^{\prime}\right)=0$ for $\mathrm{i}=\mathrm{n}, \ldots \mathrm{q}-1$,
$\mathrm{B}_{\mathrm{q}}\left(\mathrm{t}^{\prime}\right)<0$
$\mathrm{B}_{\mathrm{j}}\left(\mathrm{t}^{\prime}\right)>0$ or $\mathrm{B}_{\mathrm{j}}\left(\mathrm{t}_{0}\right)=0$ for $\mathrm{P}_{\mathrm{j}} \in \gamma, \mathrm{j}=\mathrm{q}+1, \ldots, \mathrm{n}-1$.
We call P_{q}, the first place from P_{q}, which has a positive dynamic balance at time t_{0}.
We denote by $\mathrm{t}^{\prime \prime}$, the instant when the marking of place P_{q} will be equal to zero.

* At time t ": place P_{q} becomes empty and its dynamic balance will stay null for all $t>t$ ".

With the same way, for an absorbing continuous circuit $\gamma(\mathrm{G}(\gamma)<1)$, at time $\mathrm{t}^{\prime \prime}: \mathrm{m}_{\mathrm{q}}\left(\mathrm{t}^{\prime \prime}\right)=0$
$\varphi_{\mathrm{j}}\left(\mathrm{t}^{\prime \prime}\right)>0 \forall \mathrm{~T}_{\mathrm{j}} \in \gamma$,
$\mathrm{B}_{\mathrm{i}}\left(\mathrm{t}^{\prime \prime}\right)=0$ for $\mathrm{i}=\mathrm{n}, \ldots \mathrm{q}^{\prime}-1$,
$\mathrm{B}_{\mathrm{q}^{\prime}}\left(\mathrm{t}^{\prime \prime}\right)<0$
$\mathrm{B}_{\mathrm{j}}\left(\mathrm{t}^{\prime \prime}\right)>0$ or $\mathrm{B}_{\mathrm{j}}\left(\mathrm{t}_{0}\right)=0$ for $\mathrm{P}_{\mathrm{j}} \in \gamma, \mathrm{j}=\mathrm{q}$ ' $+1, \ldots, \mathrm{n}-1$.
With the same reasoning for all places, which can be marked, one after one, their marking will be equal to zero, and the circuit will be empty. Consequently, at this time (a maximum of p events where p represents the number of positive balances at the initial date), none transition is enabled and the circuit is deadlocked.

Therefore, if $\mathrm{G}(\gamma)<1$ then the circuit is not live.
b) $\mathrm{G}(\gamma) \geq 1$ (the circuit is generating or neutral).

* at time $t_{0}: \mathrm{m}_{\mathrm{n}}\left(\mathrm{t}_{0}\right)>0$,
$\varphi_{\mathrm{j}}\left(\mathrm{t}_{0}\right)>0 \forall \mathrm{~T}_{\mathrm{j}} \in \gamma$,
$\mathrm{B}_{\mathrm{j}}\left(\mathrm{t}_{0}\right)>0$ or $\mathrm{B}_{\mathrm{j}}\left(\mathrm{t}_{0}\right)=0$ for $\mathrm{P}_{\mathrm{j}} \in \gamma, \mathrm{j} \neq \mathrm{n}$.
To study the dynamic balance of P_{n}, we are going to consider two cases:
b1. $B_{n}\left(t_{0}\right) \geq 0$:
As all other places have positive or null dynamic balance at t_{0}, we have $B\left(t_{0}\right) \geq 0$. Then, it is the steady state. Therefore, in this case, the circuit is live.
b2. $B_{n}\left(t_{0}\right)<0$:
* at time t_{0} : Let us prove, by absurd, that it exists at least one place P_{i} such that $\mathrm{B}_{\mathrm{i}}\left(\mathrm{t}_{0}\right)>0$.
If $\mathrm{m}_{\mathrm{i}}\left(\mathrm{t}_{0}\right)=0$ and $\mathrm{B}_{\mathrm{i}}\left(\mathrm{t}_{0}\right)=0$ then $\varphi_{i+1}\left(t_{0}\right)=\frac{w_{i}}{v_{i}} \cdot \varphi_{i}\left(t_{0}\right)$.

Therefore, if we suppose that every empty place $\mathrm{P}_{\mathrm{i}}, \mathrm{i}=1, \ldots$, $\mathrm{n}-1$, has a null balance, $\mathrm{B}_{\mathrm{i}}\left(\mathrm{t}_{0}\right)=0$, from property 2 , we have $\varphi_{n}\left(t_{0}\right)=\varphi_{1}\left(t_{0}\right) \cdot G_{1}^{n}=\Phi_{1} \cdot G_{1}^{n}$. So, $B_{n}\left(t_{0}\right)=w_{n} \cdot \varphi_{n}\left(t_{0}\right)-v_{n} \cdot \varphi_{1}\left(t_{0}\right)=w_{n} \cdot G_{1}^{n} \varphi_{1}\left(t_{0}\right)-v_{n} \cdot \varphi_{1}\left(t_{0}\right)$ Since $\mathrm{G}(\gamma) \geq 1$, we deduce from this last equation that $\mathrm{B}_{\mathrm{n}}\left(\mathrm{t}_{0}\right) \geq 0$ which is in contradiction with the assumption, $\mathrm{B}_{\mathrm{n}}\left(\mathrm{t}_{0}\right)<0$. Then it exists at least one place P_{i} such that $\mathrm{B}_{\mathrm{i}}\left(\mathrm{t}_{0}\right)>0$.

We note P_{k}, the first upstream place to T_{n}, which has a positive balance at time t_{0}, and t^{\prime} the instant when marking of place P_{n} becomes equal to zero.

In summarise, at time t_{0} and until the next event, this equations are verified:

$$
\begin{aligned}
& \varphi_{\mathrm{j}}\left(\mathrm{t}_{\mathrm{t}}\right)>0 \forall \mathrm{~T}_{\mathrm{j}} \in \gamma, \\
& \mathrm{~B}_{\mathrm{n}}\left(\mathrm{t}_{\mathrm{o}}\right)<0 \text { for } \mathrm{P}_{\mathrm{n}} \in \gamma \text { and } \mathrm{m}_{\mathrm{n}}\left(\mathrm{t}_{\mathrm{t}}\right)>0 \\
& \left.\mathrm{~B}_{\mathrm{j}} \mathrm{t}_{\mathrm{t}}\right)>0 \text { or } \mathrm{B}_{\mathrm{j}}\left(\mathrm{t}_{0}\right)=0 \text { for } \mathrm{P}_{\mathrm{j}} \in \gamma, \mathrm{j}=\mathrm{n}+1, \ldots, \mathrm{k}-1 . \\
& \mathrm{B}_{\mathrm{k}}\left(\mathrm{t}_{0}\right)>0 \\
& \mathrm{~B}_{\mathrm{i}}\left(\mathrm{t}_{0}\right)=0 \text { for } \mathrm{P}_{\mathrm{i}} \in \gamma, \mathrm{i}=\mathrm{k}+1, \ldots, \mathrm{n}-1
\end{aligned}
$$

* For time $t^{\prime \prime}>t \geq t^{\prime}$: (t " corresponds to instant of the next event).

Firstly, let us prove that the dynamic balance $B_{k}(t)$ marked place P_{k}, stays non negative for all $t \geq$ t '. We consider two cases:

- all the other places are empty, at time t '.

Property 1 applied to $\mathrm{T}_{\mathrm{k}}: \varphi_{k}(t)=G_{k+1}^{k} \cdot \Phi_{k+1}, \forall \mathrm{t} \geq \mathrm{t}^{\prime}$ and since $\mathrm{G}(\gamma) \geq 1$,

$$
B_{k}(t)=w_{k} \cdot G_{k+1}^{k} \cdot \Phi_{k+1}-v_{k+1} \cdot \Phi_{k+1} \geq 0 \quad \forall \mathrm{t} \geq \mathrm{t}^{\prime} .
$$

Then, P_{k} is always marked and this is the steady state. The circuit is then live .

- there is at least one other marked place, at time t^{\prime}.

We note P_{q}, the first upstream marked place to T_{k} at time $t=t$. From property 4 the dynamic balance of P_{k} stays positive as long as P_{q} is marked (at least, until t"). Then until the next event $\mathrm{t}^{\prime \prime}, \mathrm{P}_{\mathrm{k}}$ stays marked and the circuit is live.

By the same analyse for each step (each event), the marking of place P_{k} is always positive for all time t $>t_{0}$, transition T_{k} is always strongly enabled and the other transitions are also enabled (weakly or strongly). Consequently, a neutral or generating circuit is live.

In the case of neutral circuit $(\mathrm{G}(\gamma)=1)$ and under some marking assumptions, a final steady state is reached and expression of the final instantaneous firing speed vector is given.

Corollary: Let a neutral continuous weighted circuit γ with exactly one initial marked place P_{n} (all the others are supposed empty). If the continuous circuit is live (and neutral), after a finite time t_{f}, its behaviour reaches a steady state and final instantaneous firing speeds are given by:

$$
\begin{aligned}
& \text { for } j=k+1, \varphi_{k+1}(t)=\Phi_{k+1}, \forall t \geq t_{f} \\
& \text { for } j \neq k+1, \varphi_{j}(t)=G_{k+1}^{j} \cdot \Phi_{k+1}, \forall t \geq t_{f}
\end{aligned}
$$

where P_{k} is the first upstream place from P_{n} such that $\mathrm{B}_{\mathrm{k}}\left(\mathrm{t}_{0}\right)>0$ (In case that none place verifies this condition, the previous place P_{k} is then place P_{n}).

Proof: From property 2, since all places are empty at time t_{0}, we have: $\varphi_{n}\left(t_{0}\right) \leq \Phi_{1} \cdot G_{1}^{n}$.
As the loop gain is equal to one $(\mathrm{G}(\gamma)=1)$, we have $B_{n}\left(t_{0}\right) \leq w_{n} \cdot \Phi_{1} G_{1}^{n}-v_{1} \cdot \Phi_{1}=0$
We are going to consider two cases:

* $\mathrm{B}_{\mathrm{n}}\left(\mathrm{t}_{0}\right)=0$:

We will prove that all dynamic balances are null at time $\mathrm{t} \geq \mathrm{t}_{0}$.

We assume in the neutral circuit, that a place P_{q} has its dynamic balance positive. At $t=t_{0}+\varepsilon, P_{q}$ is marked and from property $3, \varphi_{n}(t) \leq \Phi_{q+1} \cdot G_{q+1}^{n}$ and $\varphi_{q}(t) \leq \Phi_{1} \cdot G_{1}^{q}$. Since $B_{n}(t)=w_{n} \cdot \varphi_{n}(t)-v_{n} \cdot \Phi_{1}=0$, we obtain $\varphi_{q}(t) \leq \varphi_{n}(t) \cdot G_{n}^{q}$. As $\mathrm{G}(\gamma)=1$, we deduce:

$$
B_{q}(t)=w_{q} \cdot \varphi_{q}(t)-v_{q} \cdot \Phi_{q+1} \leq w_{q} \cdot \varphi_{n}(t) G_{n}^{q}-v_{q} \cdot \frac{\varphi_{n}(t)}{G_{q+1}^{n}}=0
$$

It is in contradiction with the assumption $\mathrm{B}_{\mathrm{q}}(\mathrm{t})>0$. Then, all dynamic balances (excepted for place P_{n}) are null, and the steady state is reached at time $\mathrm{t}_{\mathrm{f}}=\mathrm{t}_{0}$. From property 2 , we obtain :

$$
\begin{aligned}
& \varphi_{1}(\mathrm{t})=\Phi_{1}, \forall \mathrm{t} \geq \mathrm{t}_{0} \\
& \text { for } \mathrm{j} \neq 1, \varphi_{j}(\mathrm{t})=G_{k+1}^{j} \cdot \Phi_{k+1}, \forall \mathrm{t} \geq \mathrm{t}_{0}
\end{aligned}
$$

* $\mathrm{B}_{\mathrm{n}}\left(\mathrm{t}_{\mathrm{0}}\right)<0$:

According to case b2 (see proof of theorem1), there is a least one place with a positive balance. We note P_{q}, the first downstream place to place P_{n} with $\mathrm{B}_{\mathrm{q}}\left(\mathrm{t}_{0}\right)>0$ and we call P_{k}, the first upstream place to place P_{n} with $\mathrm{B}_{\mathrm{k}}\left(\mathrm{t}_{0}\right)>0$ (remark: P_{k} can be place P_{q}). Let us prove that this dynamic balance $\mathrm{B}_{\mathrm{q}}(\mathrm{t})$ will be negative at time $t^{\prime}\left(t^{\prime}\right.$ is the instant where $\left.\mathrm{B}_{\mathrm{n}}\left(\mathrm{t}_{0}\right)=0\right)$.

At time t^{\prime}, from property 4 , all places between $\mathrm{T}_{\mathrm{k}+1}$ and T_{q} are empty and their dynamic balance equals to 0 .
From property 3 (eq.19): $\varphi_{q}(t) \leq \Phi_{k+1} \cdot G_{k+1}^{q}$ and $\Phi_{k+1}<\Phi_{q+1} \cdot G_{q+1}^{k+1}$

Then, $\varphi_{q}(t)<\Phi_{q+1} \cdot G_{q+1}^{q}$ and $\varphi_{q}(t) \cdot \frac{w_{q}}{v_{q}}<\Phi_{q+1} \cdot G_{q}^{q}$.
As $G_{q}^{q}=G(\gamma)=1$, we obtain: $\varphi_{q}(t) \cdot \frac{w_{q}}{v_{q}}<\Phi_{q+1}$. thus, $B_{q}(t)=w_{q} \cdot \varphi_{q}(t)-v_{q} \cdot \Phi_{q+1}<0$ for $t \in\left[\mathrm{t}^{\prime}, \mathrm{t}^{\prime \prime}[\right.$, such that $\mathrm{t}^{\prime \prime}$ is the instant where $\mathrm{m}_{\mathrm{q}}(\mathrm{t})=0$.
By the same reasoning, the marking of all marked places following P_{q} and different of P_{k}, are going to be null. Finally, at a finished time t_{f}, only place P_{k} will be marked and its dynamic balance will be null. In fact, from equation (16) of property 2 , we have:
$\varphi_{k}\left(t_{f}\right)=\Phi_{k+1} \cdot G_{k+1}^{k}$ then (as $\left.\mathrm{G}(\gamma)=1\right)$
$B_{k}\left(t_{f}\right)=w_{k} \cdot \varphi_{k}\left(t_{f}\right)-v_{k} \cdot \Phi_{k+1}=w_{k} \cdot \Phi_{k+1} \cdot G_{k+1}^{k}-v_{k} \cdot \Phi_{k+1}=0$
So, transition $\mathrm{T}_{\mathrm{k}+1}$ is strongly enabled and the other transitions are weakly enabled.
Therefore, according property 2 , we deduce:

$$
\begin{aligned}
& \text { for } j=k+1, \varphi_{k+1}(t)=\Phi_{k+1}, \forall t \geq t_{f} \\
& \text { for } j \neq k+1, \varphi_{j}(t)=G_{k+1}^{j} \cdot \Phi_{k+1}, \forall t \geq t_{f}
\end{aligned}
$$

5 Liveness of continuous weighted graphs

Finally, by decomposing a strongly connected continuous marked graph into elementary continuous circuits, we can generalise the condition of liveness.

Theorem 2: A strongly connected continuous weighted marked graph is live if and only if all its elementary circuits are generating or neutral and have at least one place P_{i} with not null marking $\left(m_{i}^{0}>0\right)$.

Proof: A strongly connected continuous weighted marked graph is live if and only if all its elementary circuits are live. Therefore, from the theorem 1, it is live if and only if all its elementary circuits are generating or neutral and have at least one place P_{i} with not null marking $\mathrm{m}_{\mathrm{i}}{ }^{0}$.

6 Conclusion

Since many years, the problem of liveness in Petri nets has been studied as a basic behavioural property. In this paper, we provide novel criteria of liveness of continuous weighted circuits and continuous weighted marked graphs. For neutral circuit and under marking conditions, we characterise the (permanent) steady state of the continuous system by given the final firing speed values.

It would seem, therefore, that further investigations are needed in order to find liveness of hybrid PNs. In fact, hybrid PNs [6], composed by Ttimed discrete PNs and continuous PNs, are suitable models to analyse hybrid systems as high throughput or batch manufacturing systems. As the matter of fact, the current and continuing focus on a discrete events- continuous time approach in Petri nets will pave the way towards the performance evaluation and performance control of hybrid systems.

References:

[1] H.Alla, R.David, Continuous and Hybrid Petri Nets, Journal of Circuits, Systems, and Computers, Vol. 8, No. 1, 1998, pp. 159-188.
[2] D.T.Chao, M.Zhou, D.T.Wang MultipleWeighted Marked Graphs, $12^{\text {th }}$ triennial World Congress, Australia, 1993, pp. 259-262.
[3] F.Commoner, A.W.Holt, Marked Directed Graphs, Journal of Computer and System Sciences, Vol. 5, 1971, pp. 511-523.
[4] R.David, H.Alla, Continuous Petri Nets, Proceeding of the $8^{\text {th }}$ European Workshop on Application and Theory of Petri Nets, Spain, June 1987.
[5] R.David, H.Alla, Petri Nets and Grafcet: Tools for Modeling Discrete Event Systems, PrenticeHall Int., London, 1992.
[6] R.David, Modeling of Hybrid Systems Using Continuous and Hybrid Petri Nets, $7^{\text {th }}$ international Workshop on Petri Nets and Performance Models, France, 1997, pp. 47-58.
[7] J.Lebail, H.Alla, R.David, Réseaux de Petri Hybrides. Hybrids Petri Nets, Technique et science informatique, Vol 11, No 5, 1992, pp. 95-120.
[8] T.Murata Petri nets: Properties, Analysis and Applications, Proceeding of the IEEE, 1989 pp. 541-579.
[9] M. Silva, E.Teruel, Petri Nets for the Design and Operation of Manufacturing Systems, European Journal of Control, Vol. 3, 1997, pp. 182-199.
[10] E.Teruel, P.Chrzastowski-Wachtel, J.M.Colom, M.Silva, On Weighted T-System, Lecture Notes in Computer Science, Proceeding of 3ed international conference on application of Petri nets, Sheffield, Vol. 616, 1992, pp. 348367.

