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Abstract:- This paper proposes a new blind ISI
cancelation method that involves the use of two
RLS-based adaptive �lters. By minimizing the dis-
tance between the output of the �lter and a refer-
ence signal for both �lters, the output of one �lter
turns out to be exactly equal to the ISI component
of the output of the other �lter. The di�erence
between the output of these �lters is an ISI-free
estimate of the signal. Computer simulation has
been conducted to illustrate the performance of
this new method.
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1. INTRODUCTION

In the recent years, theoretical investigations have
shown that the capacity of a multipath wire-
less channel can be enormously increased as long
as there are su�cient amount of multipath scat-
tering. A multi-user space division multiple ac-

cess(SDMA) system, which essentially separates
users based on di�erences in their locations, can
be viewed as one potential application of these
investigations. However, The received signal of
such systems tends to su�er from intersymbol in-

terference(ISI) and co-channel interference(CCI).
Traditionally, the cancelation of ISI and CCI rely
on the periodic transmission of training sequences
which are known at the receivers. This strat-
egy, however, results in a signi�cant reduction of
the e�ective communication rate because of the
fast fading of radio channels. \Blind" technolo-
gies that do not need the transmission of train-

ing sequences have therefore attracted a lot of re-
search attentions recently[1, 2, 3, 4, 5, 6]. It is
now well established that blind ISI cancelation
can be achieved by exploiting channel diversity,
whereas blind CCI cancelation or blind source sep-
aration, can be achieved possibly only by resorting
to higher-order statistics if no additional informa-
tion is available[3, 14, 15]. Many blind ISI cancela-
tion methods based on channel diversity have been
developed in the past decade. Most of them can
be viewed as either stochastic methods[1, 2, 4, 5]
or deterministic one[6, 7, 8]. Tong et al[1] were the
�rst to realize the signal cyclo-stationarity in the
identi�cation of non-minimum phase FIR chan-
nels for single-user systems. Subspace decompo-
sition is generally the most important tool in the
implementation of these methods. The methods
based on deterministic model can provide an ac-
ceptable solution within a short input sequence.
These methods however require exact knowledge
of the channel order which is never met in practice.
In view of this shortcoming, several methods[9, 10]
have been proposed based on matrix decomposi-
tion which are unsuited for adaptive implementa-
tion. Some of them are computationally intensive
too. Gesbert et al[13] developed an on-line adap-
tive blind equalizer by mutually referenced �lters.
This equalizer is conceptually similar to that re-
ported in [11] where the coe�cients of the equal-
ization �lter bank is updated such that the output
vector-sequence forms a Hankel matrix. Although
this on-line equalizer was claimed to be more ro-
bust in the presence of channel order mismatch
and exhibit global convergence, it needs to update
too many �lters which can be computationally ex-



pensive.

In this paper, we propose a blind ISI cancela-
tion method that is not a�ected by channel order
mismatch when an over-estimated channel order
is available. Its implementation can be realized
by the recursive least squares(RLS) algorithm. In
Section 2, a criterion for ISI-free estimate is in-
troduced. By minimizing this criterion, a solution
to ISI cancelation is obtained. We propose our
method in Section 3, and the RLS algorithm is pre-
sented in Section 4. Some simulation results are
listed in Section 5 and the conclusions are given in
the last section.

2. A CRITERION FOR ISI-FREE ESTIMATES

Consider a multi-user system with u user inputs
and N outputs derived from multiple antennas
and/or oversampling where N > u. Denote the
symbol rate by 1=T and the system input at time
index n as x[n] = [�1(n); �2(n); � � � ; �u(n)]t; where
�j(n) is the n-th symbol of the j-th user and the
superscript t represents transpose. We further as-
sume that each dynamic channel can be modeled
by a FIR system with ordermi for i = 1; 2; � � � ; uN
and all orders of channels are not larger than m.
The sampled output signal is then an N�1 vector
that can be represented by

y[n] =
mX
k=0

H[k]x[n� k] +w[n]; (1)

where w[n] is noise and H[k] is the k-th tap coe�-
cient matrix of channel impulse response with size
N � u. When one and only one H[k] is nonzero
and each row of this nonzero H[k] has only one
nonzero element, the received signal y[n] can be
viewed as x[n�k] up to certain constants for each
of their components. ISI cancelation is thus devel-
oped to keep one nonzero H[k] for k = 0; 1; � � � ;m,
and force the remainders to be zero.

For received signals with a high signal-to-noise
ratio(SNR), w[n] can be neglected. For the ease of
algorithm derivation, we assume zero noise w[n] =
0 at �rst. Let

s[n] = [x[n]t;x[n� 1]t; � � � ;x[n� L�m+ 1]t]t;

o[n] = [y[n]t;y[n� 1]t; � � � ;y[n� L+ 1]t]t; (2)
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we then have
o[n] = As[n]; (3)

where L is an integer such that LN > (m + L)u.
Let M = m+L, then A is a L�M block Toeplitz
matrix. For further discussion, we assume that the
components of input sequence x[n] are white and
uncorrelated to each other, and A is full-column
rank.
Let B be a uM � LN matrix that generates an

output as

e[n] = Bo[n] = BAs[n]: (4)

Denote the i-th block row of B by Bi, i =
1; 2; � � � ;M , then Bi is a u� LN matrix. Let

zij [n] = ei[n+ j � i]� ej[n]; j < i:

We de�ne a criterion

�(Bi;Bj) = Efzij [n]zij [n]yg; (5)

where y stands for conjugate transpose operator
and ei[n] = Bio[n], ej[n] = Bjo[n]. Obviously,
�(Bi;Bj) is a u�u matrix and is of non-negative
de�nite for any pair of i; j. We de�ne that the
minimum of �(Bi;Bj) is the matrix whose eigen-
values all arrive at their minimum points. Let
BiA = [Di1;Di2; � � � ;DiM ], i = 1; 2; � � � ;M and

Rxx(0) = Efx[n]x[n]yg;
then

�(Bi;Bj)

=
M+j�iX
k=1

(Di;k �Dj;k�j+i)Rxx(0)(Di;k �Dj;k�j+i)
y

+
i�jX
k=1

Dj;kRxx(0)D
y
j;k +

MX
k=M+j�i+1

Di;kRxx(0)D
y
i;k:

Since Rxx(0) is positive de�nite, minimizing
�(Bi;Bj) with respect to Bi, subject to a con-
stant Bj gives�
Di;k = Dj;k�j+i; for k = 1; 2; � � � ;M + j � i:
Di;k = 0; for k =M + j � i+ 1; � � � ;M:

(6)



This property of criterion (5) will play an im-
portant role in our algorithm development. No-
tice that if the channel order m is known then
M = L+m is known. In that case, letting i =M
and j = 1, we have

�
DM;k = 0; for k = 2; 3; � � � ;M;
DM;M = D1;1

(7)

which results in an ISI-free output[11]:

eM [n] = DM;Mx[n�M + 1]; (8)

where DM;M = D1;1 6= 0, or in other words, B1 is
assumed to be a vector that is not orthogonal to
the �rst block column of A. However, in practice,
two facts render the estimate (8) useless: smaller
leading coe�cient H[0] and additive noise at the
receiver. Because of the special structure of A, a
smaller H[0] will lead to a smaller D1;1, and thus
a poor SNR estimate of x[n]. When the received
signal is corrupted by noise, the channel order can-
not be accurately estimated. The ISI-free estimate
(8), however, requires an exact channel order. In
order to overcome these shortcomings, we propose
a new ISI cancelation scheme as is described be-
low.

3. OUR PROPOSED METHOD

Note that the estimate obtained by Bi can be rep-
resented by

ei[n] = Bio[n] =
MX
k=1

Di;kx[n� k + 1]:

If Bi minimizes the criterion (5), then from (6) the
last i� j components of [Di1;Di2; � � � ;DiM ] must
be zero. The estimate can thus be re-written as

ei[n] =
M+j�iX
k=1

Dj;k�j+ix[n� k + 1]:

In other words, the span of ISI in ei[n] is shrunk
from M to M + j � i. Keeping Bj constant and
minimizing �(Bi+1;Bj), similarly, gives

ei+1[n] =
M+j�i�1X

k=1

Dj;k�j+i+1x[n� k + 1]:

Therefore, let

x̂[n] = ei[n]� ei+1[n� 1]: (9)

Then

x̂[n] =
M+j�iX
k=1

Dj;k�j+ix[n� k + 1]

�
M+j�iX
k=2

Dj;k�j+ix[n� k + 1]

= Dj;i�j+1x[n]

which is a scaled ISI-free estimate of x[n] without
any time-delay when Dj;i�j+1 6= 0. Now, let us
consider the case where w[n] 6= 0. The ISI-free
estimate is

x̂[n] = Dj;i�j+1x[n] +Bin[n]�Bi+1n[n� 1];

where n[n] is the noise component de�ned by

n[n] = [w[n]t;w[n� 1]t; � � � ;w[n� L+ 1]t]t:

Since the values of Bi+1 and Bi are related to A,
they are the solutions of criterion (5) and cannot
be controlled. The SNR improvement of x̂[n] is
thus determined by the value of Dj;i�j+1, or the
selection of Bj .
Observe that the middle elements of channel im-

pulse coe�cients H[k], k = 0; 1; � � � ;m in (1) are
generally larger than its leading and last few el-
ements. One possible solution of selecting Bj is
to use the received signal directly as the reference,
and let Dj;i�j+1 be a middle element of the chan-
nel impulse response. To do so, let Bj = B1 =
[Iu;0;0; � � � ;0] where Iu is the identity with di-
mension u. Denote Hu[k] as the matrix consisting
of the �rst u rows of H[k] for k = 0; 1; � � � ;m,
and wu[n] as the �rst u elements of w[n] for
n = 1; 2; � � � ; p. Then,

e1[n] = B1o[n] =
mX
k=0

Hu[k]x[n� k] +wu[n];

and

x̂[n] = Hu[i�1]x[n]+Bin[n]�Bi+1n[n�1]; (10)
for 2 � i � M: When Hu[i � 1] 6= 0, x̂[n] is a
scaled ISI-free estimate of the original input sig-
nals. In practice, an estimate of x[n] with good
SNR is highlight needed. For single-user sys-
tems (u = 1), Hu[i � 1] degenerates into a con-
stant. Therefore, the larger the absolute value of



Hu[i� 1], the better the estimate x̂[n]. For multi-
user systems, Hu[i � 1] is a u� u mixing matrix.
The criterion of a good integer i becomes compli-
cated. Generally speaking, if the determinant of
Hu[i � 1] is far away from zero, then it can be
viewed as a good candidate. However, from the
overall system standpoint, some other candidates
should be valued. Since x̂[n] is used as the input
of a source separation algorithm for CCI cancela-
tion, ideally, if Hu[i� 1] is the matrix whose rows
contain the unique nonzero element, it is possibly
another good candidate. In such case, some com-
ponents of x̂[n] come from only one user input.
Consequently, by letting index i be di�erent in-
tegers, several ISI-free estimates can be obtained
with (10). It is likely that with these estimates the
CCI cancelation procedure can be simpli�ed. This
is perhaps another contribution of this paper.

4. RECURSIVE LEAST-SQUARE
ALGORITHM

Based on the above discussion, an ISI-free estimate
of the original input can be obtained by (10). The
key point is to minimize the criteria related to both
Bi and Bi+1 respectively, with the channel output
as their references. Now, let us consider the solu-
tion of Bi �rst. Let B1 = [Iu;0; � � � ;0] and

�(Bi;B1) = BiRoo(0)B
y
i +B1Roo(0)B

y
1

� BiRoo(i� 1)By
1 �B1Roo(i� 1)yBy

i ;

where Roo(0) = Efo[n]o[n]yg and Roo(i � 1) =
Efo[n + 1 � i]o[n]yg. At the minimum point
of �(Bi), Bi is the solution to the Wiener-Hopf

equation and is given by

Bi = B1Roo(i� 1)yR#
oo(0); (11)

where superscript # stands for pseudo-inverse op-
erator. Correlation matrices Roo(0), Roo(i � 1)
and Roo(i) can be approximated by the received
sample sequence o[n]. By substituting i with i+1,
Bi+1 is obtained by (11). Consequently, a batch
algorithm of ISI cancelation can be easily designed.
The ISI-free estimate is computed as

x̂[n] = Bio[n]�Bi+1o[n� 1]:

Although this batch algorithm is less sensitive to
the error of channel order estimate in comparison

with other existing algorithms, it still involves a
pseudo-inverse process that is time-consuming. In
order to reduce the computation, the Recursive

Least-Squares(RLS) algorithm is applied for the
computation of Roo(0) at the arrival of each re-
ceived sample. The algorithm can be illustrated
in Figure 1. In this block diagram, x̂[n+1-i] is
the ISI-free estimate of the baseband signal. Two
procedures are involved in this algorithm for the
adaptation of Bi and Bi+1. The reference signal
e1[n] consists of the �rst u components of the re-
ceived signal y[n], and is used to generate the error
signals for the adaptation of Bi and Bi+1. Note
that the criterion in (5) does in fact represent the
energy of the error signal. Bi and Bi+1 are then
updated iteratively so that the energies of both
error signals reach their minimum points.
Let 0 < � < 1. � is referred to as the forgetting

factor. Denote R
(n)
oo (0) as the values of Roo(0) at

time index n. Then,

R(n)
oo (0) = �R(n�1)

oo (0) + o[n]o[n]y

where R
(0)
oo (0) = 0 and n > 0. According to the

matrix inversion lemma(pp.565, [12]), the inverse
of Roo(0) can be updated by

R(n)#
oo (0) = ��1(1� k(n)o[n]y)R(n�1)#

oo (0)

where R
(0)#
oo (0) = ��1I, � is a small positive con-

stant and I is the identity with the dimension equal
to that of Roo(0), and

k(n) =
��1R

(n�1)#
oo (0)o[n]

1 + ��1o[n]yR
(n�1)#
oo (0)o[n]

:

The procedure involved in our proposed algorithm
is now summarized below.

1. Suppose that the channel order is over-
estimated as m, then L is chosen as the small-
est integer greater than mu=(N � u). Let i
be a certain positive integer less than m, � be
a small positive constant and 0 < � < 1, and

M = m+L. R
(0)#
oo (0) = ��1I, R

(0)
oo (i�1) = 0,

R
(0)
oo (i) = 0.

2. For n = 1; 2; � � �,
{ collect the received sample y[n] and con-
struct o[n] by (2) where, if n < 1 in y[n]
then let y[n] = 0.



{ update

R(n)
oo (i�1) = �R(n�1)

oo (i�1)+o[n]o[n+1�i]y;
R(n)

oo (i) = �R(n�1)
oo (i) + o[n]o[n� i]y;

and

k(n) =
��1R

(n�1)#
oo (0)o[n]

1 + ��1o[n]yR
(n�1)#
oo (0)o[n]

;

R(n)#
oo (0) = ��1(1� k(n)o[n]y)R(n�1)#

oo (0)

{ compute

Bi = B1Roo(i� 1)(n)yR(n)#
oo (0);

Bi+1 = B1Roo(i)
(n)yR(n)#

oo (0);

{ estimate the ISI-free output

x̂[n] = Bio[n]�Bi+1o[n� 1]:

3. End.

The algorithm can be divided into three parts
for each new received signal sample: determin-
ing three correlation matrices, computing Bi and
Bi+1, and making an estimate of the original sig-
nal x[n]. The estimate x̂[n] has a �xed number
of symbol time delays i � 1. Its SNR is strongly
dependent on the selection of the integer i. As
mentioned above, for single-user communication
systems, it is better to select a value of i so that
the (i)-th coe�cient of the channel impulse re-
sponse is far away from zero. However, because
of the \blind" limitation, no knowledge about the
channel impulse response is available prior to the
setting of the value of i. As the absolute values
(determinant) of the center coe�cients are gener-
ally large, one possible way is to let i be an integer
in [2;m� 1].

5. SIMULATION EXAMPLES

In this section, the ISI cancelation algorithm is
evaluated by a single-user wireless communication
system. The source data is shaped by a pulse
shaped �lter before being transmitted. The pulse
shaped �lter has a raised-cosine impulse response
function p(t) with roll-o� factor � = 0:1. Let the
channel be a two-ray multi-path whose impulse re-
sponse is expressed by

h(t) = p(t)� 0:4(1 + j)p(t� 1:3Ts); (12)

where Ts is the baud period and j =
p�1. The

raised-cosine pulse p(t) is truncated to 4Ts. The
channel order is then m = 4. The estimate of
channel order is set to be 5 in our simulations in
order for demonstrating the robustness of our algo-
rithm to channel order error. Under SNR=30dB,
1000 source symbols of a single user input drawn
from uniform 4 QAM are transmitted. The re-
ceived signal is oversampled by a factor of 2. The
channel impulse response is shown in Figure 2
where the coe�cients with odd index consist of
sub-channel one and those with even index con-
sist of sub-channel two. Let i = 2. Figure 3 is
an eyes diagram after equalization at SNR=30dB.
Figure 4 shows the impulse coe�cients of two
\composite channels" obtained by B2A and B3A.
It is obvious to see that the �rst coe�cient of (a)
and (b) in Figure 4 is almost equal to the second
coe�cient of sub-channel one in Figure 2, i.e. the
third ( 2nd odd ) in both real and imaginary parts
respectively; the second of (a) and (b), and the
�rst of (c) and (d) in Figure 4 is equal to each
other respectively, and is equal to the �fth coe�-
cient in Figure 2, and so on. Figure 5 presents the
ISI situation of x̂(n). The ISI of x̂(n) comes from
the di�erence of the two composite channel coef-
�cients represented by \circle" and \star", and is
indeed very small.

6. CONCLUSIONS

In this paper, by taking the advantage of channel
diversity in linear multi-user systems, we proposed
a new blind RLS-type ISI cancelation algorithm.
The algorithm updates two �lter parameters by
using received signal as reference so that the out-
put of one �lter is exactly equal to the ISI part of
the other. The di�erence between these two �lter
outputs is therefore an ISI-free estimate of the in-
put. This algorithm works well in the presence of
channel order mismatch and, is simple and easy to
implement by RLS structure.
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Figure 3. Eyes diagram after equalization under
SNR=30dB.
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Figure 4. Impulse Coe�cients of \Composite Chan-
nels": (a) and (b) consist of the composite channel
whose output is ei(n); whereas (c) and (d) consist
of the one whose output is ei+1(n)
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Figure 5. Impulse Coe�cients of \Composite Chan-
nel" for x̂(n): the coe�cient is the distance between
\circle" and \star" at each index.


