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Abstract: -  In these years we have been dealing with the problem of VLSI fuzzy chip design because the
processing rate of the fuzzy chips available on the market is too low for trigger applications in High Energy
Physics Experiments. So far we have designed a two input fuzzy processor in VHDL code using the Synopsys
SW as front end tool for synthesis and optimisation of the VHDL code. The chip has been targeted to the
Alcatel Mietec 0.35 micron CMOS technology since it is one of the most powerful and it is available at an
accessible price through Europractice. The chip architecture is pipelined with a clock frequency of 133 MHz
that means a processing rate of 30 nanoseconds since only the active rules are processed. The chip has been
sent to IMEC the last December to be constructed. The chip size has an area of 3 mm2 for a total power
consumption of 200 mW: the place and route has been done at IMEC with the Avant! software. Proc.pp.2751-2758
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1. Introduction
There are applications in High Energy Physics
Experiments where it is necessary to reach a high
processing rate such as few tens of nanoseconds.
Since we decided to face the trigger problem
using a fuzzy-logic based system we decided to
design a dedicated chip. In fact most of the fuzzy
logic based controllers available on the market [1]
[2] are much more slower than the ones required
in trigger applications. We decided to have our
chip realised using Alcatel Mietec 0.35 µm
CMOS VLSI technology, one of the most
interesting among the deep sub-micron ones
available through Europractice. In order to reach
similar performances we have taken the following
decisions:
- to design a parallel-pipeline architecture of

the chip at the highest possible frequency (the
technology adopted allowed us to reach a
maximum frequency of 133 MHz);

- to implement in HW the simplest algorithms
like the Sugeno order zero inference and
defuzzification method [3];

- to process only the active rules, when possible
[4] [5];

- when  not possible we  decided, for our
applications, to design fuzzy processors
matched to the fuzzy systems obtained by a
genetic rule generator [6].

We want the processing rate to be independent
from the fuzzy system that has to be processed.
To get this result:
- the fuzzy system is previously converted into

an equivalent one where all the rules are
present (each one involving all the variables)
and then loaded into the on-chip rule memory;

- no more than 2 adjacent MFs can overlap;
- the rule antecedent allows to determine the

rule address;
- an Active Rule Selector, ARS, is able to

identify and process only the active rules
related to each input data set without time
consuming [7].

2. The  chip main performances
The chip architecture involves 12 pipeline stages,
each one taking 7.5 ns.
The main features of the fuzzy processor can be
summarised as follows:



- two 7 bit inputs, one 7 bit output;
- 8 membership functions for each of the 2

input variables;
- maximum overlapping of the input MFs no

more than 2;
- 128 crisp MFs for the output variable;
- 4 bits both for the antecedent and the premise

degree of truth, from now on called
respectively α and θ value;

- T-norm implemented by Minimum, (MIN), or
Product to obtain the θ value;

- Sugeno order zero inference and
defuzzification method;

- 133 Mega Fuzzy Inferences per second with a
133 MHz clock - this is the maximum clock
speed allowed by the RAM memories in the
Alcatel Mietec 0.35 µm technology.

With these features we obtain the following
performances:
- any mathematical function can be

approximated with an error of 1%;
- each  rule is processed in one clock period;
- the processing rate is: number of active rules

times the clock period: 4 x 7.5 ns = 30 ns;
- the total processing time is: processing rate

plus the following contributions:
- number of periods for the input

synchronisation: 1 x 7.5 ns = 7.5 ns;
- number of the pipeline stages times the

clock period: 12 x 7.5 ns = 90 ns;
- number of periods required by the

division process: 4x 7.5 ns = 30 ns.
The main chip architecture is reported in figure 1.
The Active Rule Selector selects the active rules
related to the actual values of the input variables.
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Figure 1. The fuzzy chip architecture

Figure 2. An input data set and the related MFs
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To do that it generates the related addresses for

the rule memory. Then the fuzzification process
starts. Here follows an explanation regarding the
way the rules are stored and how the active ones
are selected, then  each block will be described in
more details.

3. The selection of the active fuzzy
rules

To understand what an active rule is let us
suppose to have a fuzzy system with 2 input
variables, 3 FSs for each input with an
overlapping of the MFs not higher than 2. A
typical fuzzy rule for the above fuzzy system is
like:

if (X0 is Low) and (X1 is Medium)
then (Z is High)

You can see in figure 2 that only the four rules
where X0 is related to L or M FSs and/or X1 to M
or H FSs give a non zero contribution to the final
result, that is the α values are different from 0:
these rules are called active rules. Figure 2 shows
the α value which is the degree of truth related to
the predicate X0 is Low. If we have N input
variables, K  FSs for each input variable, only t-
norm operator for the rules and at most an overlap
of 2, the active rules are  2N while all the possible
fuzzy rules are  KN. Therefore, for the above
example, we can process only 4 rules instead of 9
for a fuzzy system made of all the rules.
Our 2 input fuzzy processor is able to process
only the active rules,  which are 4, between all the

possible ones, which are 64 without time
consuming; to obtain this result our solution
requires:
- to store a fuzzy system made of all the

possible rules in the fuzzy chip;
- to use the premise code of a rule as address of

the same one, where a specific code is stored
as described below.

To illustrate our rule code let us suppose to have
only three MFs for each of the two input
variables. In that case the number of all possible
rules is 8. Then  we store the rules starting from
the address 000 where it is stored the rule:

if (X0 is Low) and (X1 is Low) then (Z is ...)
and at the address 001 the rule:

if (X0 is Low) and (X1 is Medium) then (Z is ...)
and so on.
The rule code consists of two parts: the first one,
related to the premise, where 0 means that the
related variable is not present in the rule while 1
means the vice versa and the second one, related
to the consequent, reports the crisp output fuzzy
set value. In this way the rule address defines the
fuzzy sets of the premise while the rule code
confirms or not if the rule was present in the
initial fuzzy system (the one that might not
contain all the rules) and which input variables
and output FS were involved. For example the
premise code “10” means that the active rule
involved comes from a rule in the former fuzzy
system where X0 is present while X1 is not and
the consequent code identifies the crisp value of
the output FS. If we had “00” as a premise code it
would mean that there is not a corresponding rule
in the initial fuzzy system, therefore its
contribution must be zero.
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4. The chip architecture
Firstly the input data set has to be loaded into the
chip  according to the input synchronisation
handshake signals. The input data set must be
ready at any time depending on the external
device that generates it but it has to be loaded just
when the fuzzy processor is ready itself and has
also to be synchronised with the fuzzy chip clock
signal. For this reason the fuzzy processor has
been provided with an Input_Ready and an
Output_Ready handshake signals. The chip
architecture is made of several blocks that will be
here illustrated.

4.1 The Active Rule Selector
In this block there are two RAM memories, see
MF0, MF1 modules in figure 3, which contain the
beginning and ending points of the 8 MFs related
to each variable. For each input data set it proves
sufficient to store only six words because for 8
MFs there are 7 intervals and the beginning and
ending point are known. Then an active MF
selector can select the two active MFs related to
each input variable actual value. As soon as these
MFs are identified another circuit is able to
compute the address code of the related active
rules.

4.2 The fuzzification process
The fuzzification process, that is the calculation of
the input degrees of truth, may be accomplished in
either of two different ways: or with an arithmetic

calculation [8] or simply using a lookup-up table.
As an arithmetic calculation can be quite time and
area consuming, we decided to implement a fast
look-up table method, see figure 4. A second
advantage of this method is its high flexibility in
defining membership functions: any arbitrary
membership function shape can be defined.
Besides the restrictions on the maximum
overlapping of two fuzzy sets leads to a very
small memory block.

4.3 The MIN or Product operator
Via an input pin the operation mode is selected,
that is the θ value can be computed either with the
minimum operation or with a product. The MIN
or product circuit receives the α values and the
premise code of the rule being processed, which is
related to the fuzzy system where all the rules are
present, as in figure 5. That rule may have or not a
corresponding rule in the original fuzzy system: if
it has the corresponding one it may have or not all
the input variables. Therefore the premise code
takes into account if that rule is present: for
example if there is only X1 the premise code is
“01”. Therefore the α selector circuits generate
for the α0 the 1111 number to be processed by the
MIN or product operator and so on.

4.4 The defuzzification block
This block receives from the MIN circuit the θ
value and from the rule memory the consequent
code, that is the crisp 7 bit Z value and  it
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computes the Σθ and Σθ∗Z operations. After
processing the last rule a new input data set can
enter and the division process starts to compute, in
parallel to the pipeline processing,  the Zo output
value (see figure 6):   

                    Zo =  Σ Zi * θi /  Σ θi                         (1)

4.5 The pipeline timing
We will describe now what elaboration takes
place, clock by clock, in each pipeline stage:
- at the first clock a new input data set is loaded
into the input register; this process is off line to
the pipeline processing;
- the ARS requires one clock cycle to generate the
code of the active MFs, the MFs corresponding to
the actual values of the inputs;
- the fuzzification block requires 8 clock periods
to compute the α values: pipeline steps from 2 to
9;
- the MIN or Product block requires one clock to
compute the θ value:  pipeline step 10;
- the defuzzification block requires one clock to
compute the Σ θi and the Sugeno multiplication Zi

θi  operations and another clock to compute  the Σ
Zi * θi operation: pipeline steps 11 and 12.
- the division process takes place when the last
rule has been processed and runs in parallel to the
pipeline stages. It takes nearly 30 ns.

5. Implemented Features for I/O
Control

As already explained above, for HEPE
applications the speed, in terms of computation

time, is a very important constraint and is
absolutely to be met; then for having a flexible
fuzzy chip, it also has to be easy-to-use for what
concerns the input-output handshake signals.
The fuzzy processor is to be used mounted on a
printed board and synchronised with an on-board
clock signal. So far it provides itself with all the
synchronisation steps between itself and an
external device write and load cycles.
The fuzzy processor, in fact, does not delegate the
input-output handshake synchronisation signals to
external devices such as controllers or dedicated
processors, but a simple handshake signal
configuration has been studied. Here follows a
brief description of these input-output signals:
- an Input_Ready signal, synchronous with the on-
board clock signal, is used for enabling the
external device write cycle. In other words the
external device can write its data into the fuzzy
processor internal RAMs, by means of an external
driven Load_Input signal, just when this
Input_Ready signal is active. In addition, the
external device must hold the input data set and
the Load_Input signal valid for at least two on-
board clock periods. In this way the fuzzy
processor can both recognise the external device
write cycle and synchronise the device data with
the on-board clock signal;
- one output signal named Output_Ready has been
implemented to enable the external device for
accepting the output data of the fuzzy processor.
Since the fuzzy processor may be synchronised
with a up to 133 MHz (7.5 ns) clock rate, and
since the division process can take up to 30 ns,
these output handshake signal is synchronised

Figure 7: The block diagram of the chip layout Figure 8. The fuzzy chip layout



four clock periods after the division process has
started.

6. The VLSI Implementation
    From the point of view of the VLSI
implementation of the fuzzy chip we have divided
the chip in blocks which are different from the
ones described in the previous paragraph: for
example the rule memory is one of the most
important because of its size. In figure 7 a block
diagram of the chip layout is shown while figure 8
reports the actual layout. These blocks have been
designed in order to reach both high clock speed
and low power consumption. Of course a trade-off
solution has been adopted but, anyway, the
proposed goals have been met.
In 1997 we designed and constructed a first
version of the two input fuzzy processor [9] in
ES2 0.7 µm  CMOS technology with a 50 MHz
clock. The chip had a total area of 14 mm2 and a
total power consumption of 1 W. Moving from 50
to 133 MHz has required some architectural
changes to the old structure: it is not sufficient to
re-synthesise the old VHDL code on the new
technology, as one could believe. First of all the
pipeline stages have to be optimised for a clock
period of 7.5 ns: this means that some of the
blocks have to be subdivided into faster ones until
they can work at the target speed. For example the
multiplier θ * Z (4 x 7 bits) has been subdivided
into two smaller blocks working in pipeline at the
right frequency of 133 MHz. The total latency has
increased to 2 clock periods but every 7.5 ns a
valid data θ * Z is produced in output. So far the
total number of pipeline stages will increase even
if the final latency will not. Another useful
guideline for designing ASICs over the frequency
of 100 MHz is to strictly avoid the use of gated
clocks. Clock gating proves to be useful when
some blocks of a circuit have to be enabled while
others not. For example we made use of this
technique in the old version of the fuzzy chip for
selecting only one of three memory blocks at a
time (while the others two are in a stand-by state)
in order to save power. While this technique is
widely used for low-medium frequencies it may
generate some risks at higher speeds. In fact using
combinatorial control logic on the clock net may
give rise to spikes whose effect may randomly
affect the behaviour of the entire logic of the
circuit. In this new version of the fuzzy chip the

clock net directly drives all the 300 flip-flops and
the 3 RAM memories without any control logic
on it. One has only to provide a clock buffer able
to drive this net with an acceptable skew: this
means that the clock signal has to reach every
flip-flop in the IC nearly at the same moment .

6.1 Place and route
The place and route of the chip has been done at
IMEC (Leuven, Belgium) using the Aquarius XO
Avant! tool. In fact the 0.35 µm Alcatel Mietec
design kit requires the Synopsys software as the
front-end tool for the synthesis and optimisation
of the VHDL code and Avant! as the back-end
one, for the final place and route. Since a license
of the Avant! software has a prohibitive cost for
the Universities or small industries some
software-houses and  microelectronics companies
have bought a license of it and make the layout
job for others with a certain price per day of work.
We had this job done at IMEC, which is one of
the microelectronics groups within Europractice
that works as an intermediary between small
design groups and the IC foundries providing both
software and design kits. This job took 5 days for
the layout design itself, then 3 days for the final
layout verification using the Dracula tools. When
a preliminary version of the layout was finished
IMEC sent us a file with all the post-layout delays
due to the interconnections. We then performed
the post-layout simulations and verified that the
chip works properly at the target frequency of 133
MHz.
One of the most effective features of the Avant!
software concerns the clock tree synthesis: once
decided the number of levels of buffers a clock
tree is automatically synthesised by Avant!
without having to route it manually as in other
older tools. The skew of the clock net generated is
12 ps, that is completely neglectable at out target
frequency. The final area of the chip is about 3
mm2 versus the 14 mm2 of the older one in 0.7 µm
ES2 technology. The chip has already been
submitted to the Alcatel Mietec foundry for the
December 1998 run and the first prototypes will
be ready for the beginning of April 1999. In figure
8 a picture of the chip layout is reported. As you
can see the 3 memory blocks have been put on the
left side of the die area. The upper block is the
rule memory, while the others are the look-up
table containing information of the input MFs. All



the 1700 standard cells have been put in a
rectangular region on the right of the chip: they
are surrounded by a double ring for power and
ground nets. The clock net  has been
automatically traced by Avant! with a tree-shape
structure in order to minimise the skew.

5. The HW and the SW developed to
run the fuzzy processor

The VLSI fuzzy processor will be assembled on
an printed circuit board for loading and running
the fuzzy system. The fuzzy system can be loaded
by means either  a serial pin or the input data pins.
The fuzzy chip assembled on the above printed
board will be programmed via a multi I/O
commercial board linked to a PC. In this way it is
possible to load any fuzzy system into the fuzzy
processor memories according to the handshake
signal templates. In addition, by means of the
same board, it is possible to run the fuzzy
processor just by loading an input data set from
the PC; otherwise, once a fuzzy system has been
loaded, the input data set can also come from an
external device. The printed board, where the
fuzzy processor is going to be implemented, also
has a clock signal and a battery for holding the
fuzzy chip memory alive also when not running.
Therefore the fuzzy chip can work off line to the
PC to control the external device. Software
programming tools have been developed running
under Windows 95 with a friendly graphic
interface:
- to edit the input data, the MFs and the rules;
- to automatically convert any fuzzy system in

a new one where all the rules are present;
- to run the fuzzy system;
- to drive the fuzzy processor simulator.
The fuzzy simulator allows you to develop and
test the fuzzy system, you are working with,
without the board linked to the PC. It can generate
also all the intermediate vectors related to each
pipeline stage in order to test the design in the
Synopsys environment and then to test the chip by
the Tektronics ASIC tester when it comes back
from the foundry. A warning is generated if errors
are made. Debugging facilities are supplied: for
example you can easily run the same set of data
and  MFs with different set of rules both with the
chip simulator and with the chip itself.  This
software, according to the requested tasks, runs in
two different modes: compiler mode and

debugger one. In the compiler mode it works like
an ordinary compiler just used to load properly
the fuzzy chip memories while, in the debugger
mode, a verbose list of all the intermediate
vectors, which are involved in the inference
process, is printed to the standard output.

8.  Conclusions
We have been able to reach a clock frequency not
higher than 133 MHz because the RAM megacells
available at present are limited at this frequency.
The two input fuzzy chip previously realised with
the 0.7 µm technology has on area of  14 mm2

while with 0.35 µm technology has about 3 mm2

area. Moreover we have increased the throughput
from 80 ns to 30 ns. This new chip will be
assembled  on a printed board and then can be
linked to a PC to develop and test a fuzzy system
for a specific application. Then it can work off-
line linked to the device to be controlled as in the
board there will be a clock and a battery. A four
input fuzzy chip has been constructed two years
ago [7] in ES2 0.7 micron, we plan to redesign it
using this new technology and we hope not to
have the limitation of the RAM megacell speed in
order to reach a higher speed.

Acknowledgements

We greatefully acknowledge the "Laboratorio di
Tecnologie Subnucleari" at the Department of
Physics (University of Bologna) for using its
instruments, in particular for the ASIC Tektronics
tester used to test the fuzzy processor.

 References:

1. Pagni, Poluzzi, Lo Presti, Rizzotto
"Automatic Syntesis Analysis Implementation
of a Fuzzy Controller"  IEEE International
Conference on Fuzzy Systems 1993, San
Francisco, pp. 105-110.

2. Neichfeld, Klinche, Menke, Nolles,
Kunemund "A General Purpose Fuzzy
Inference Process"  IEEE International
Conference on Microelectronics for Neural
Networks and Fuzzy Systems, Turin 1994,  pp
310-318.

3. M. Sugeno "Industrial Applications of Fuzzy
Control" Elsevier Science Pub. Co. 1985 - see



also Fuzzy Logic Handbook for use with
Matlab pp. 2-53.

4. Ikeda, Kisu, Hiramoto, Nakamura  "A Fuzzy
Inference Coprocessor Using a Flexible
Active-Rule-Driven Architecture" - IKE IEEE
1992, pp 537-544.

5. F. Boschetti, A. Gabrielli, E. Gandolfi, M.
Masetti,  "Fuzzy Logic Oriented to Active
Rule Selector and Membership Function
Generator for High Speed Digital Fuzzy
Microprocessor " - World Congress on Neural
Networks, July 17-21 1995 Washington  -
Vol. 3 pp. 93 – 97

6. R. Caponetto, M. Lavagna, M. Lo Presti, A.
Milazzotto "Genetic Algorithms and Neuro-
Fuzzy Systems for Automatic Controller
Design" Proceedings of CIFT’95, Trento Italy
June 8-10 95, pp 38-47

7. A. Gabrielli, E. Gandolfi, “A fast digital fuzzy
processor”, IEEE Micro, Jan-Feb 1999, pp.
68-79

8. F. Boschetti, A. Gabrielli, E. Gandolfi, M.
Masetti, M. Russo  "Digital Membership
Function Generators and No-Contribute Rule
Eliminator for High Speed Fuzzy
Architectures "- World Congress on Neural
Networks July 17-21 1995 Washington  - Vol.
2 pp. 625 - 629

9. D, Falchieri, A. Gabrielli, E. Gandolfi, M.
Masetti "Design and Realization of a Two
Input Fuzzy Chip Running at a Rate of 80 ns”
Annual IEEE Meeting of the North America
Fuzzy Information Processing Society
Syracuse, September 21-24, pp. 329-335.

.


