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Abstract: - The theory of Julia and Fatou holds for the complex plane as well as for the Riemann
sphere, with minor modi�cations. The latter space seems a more natural approach to examine rational
functions. Schr�oder iteration functions, a generalization of Newton-Raphson method to determine roots
of equations, are generally rational functions which, until now, are examined only in the complex plane.
On the Riemann sphere we examine the Julia sets of the Schr�oder functions constructed to converge to
the nth roots of unity and the orbits of all free critical points of these functions as applied to a one-
parameter family of cubic polynomials. Finally, we present a new algorithmic construction to maximize
the computational e�ciency of the Schr�oder functions.
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1 Introduction

The method of iteration is the prototype of all nu-
merical methods for attacking the problem of solv-
ing (nonlinear) equations in one and several vari-
ables. The convergence of these methods, generally,
depends upon the initial approximation to a root of
our equation. In the special case of polynomial equa-
tions, good a priori knowledge of the desired root of
the equation often is not available. Looking at the
set of all the starting values from a geometrical point
of view will de�nitely help us to choose these initial
approximations to a root and compare the conver-
gence properties of various iterative methods.

Ernst Schr�oder [ 9] in 1870 described a method
of �nding a rational iterating function of any de-

sired \order of convergence" to determine roots of
equations. For polynomial equations this involves
the iteration of rational functions over the complex
Riemann sphere which is described by the classical
theory of Julia [ 8] and Fatou [ 6] and its subsequent
developments, also of paramount importance in the
context of Numerical Analysis. In what follows we
abbreviate as fk the k-fold composition f �f �� � ��f ,
by region we mean a connected open set on the ex-
tended complex plane C = C [ f1g and if we have
a rational function of the form R(z) = P (z)=Q(z),
where P (z) and Q(z) are complex polynomials with
no common factors, the degree of R is de�ned by
deg(R) = maxfdeg(P ); deg(Q)g.

It appears that convergence of the sequence
of iterates z0; R(z0); R2(z0); : : : is assured for every



choice of starting point z0 on the extended complex
plane, except when z0 is a point of a certain nowhere
dense perfect set, the Julia set J(R). How \close" a
starting point must be to the desired root depends
on certain convergence conditions and how \fast"
does the method converge depends on the order of
convergence of our iterative method.

It may happen, however, that when choosing a
starting point z0 in a certain domain, convergence
takes place not to a zero of our polynomial, but to a
periodic orbit or cycle, that is a set of p � 2 distinct
points fa1; : : : ; apg such that

R(a1) = a2; : : : ; R(ap�1) = ap; R(ap) = a1;

so that, in fact, for each k = 1; 2; : : : ; p, z = ak is a
solution of Rp(z) = z. Hence, a point a is periodic
if Rp(a) = a for some p > 0; it is repelling, indif-
ferent or attracting depending on whether j(Rp)0(a)j
is greater than, equal to, or less than one. If
j(Rp)0(a)j = 0, a is termed superattracting. If p = 1,
z is called a �xed point of R. The Julia set J(R) of
a rational function R is the closure of all repelling
periodic points of R and the Fatou set is its comple-
ment on C . Also, if a is an attracting �xed point of
R then

A(a) = fz 2 C : lim
k!1

Rk(z) = ag

is the basin of attraction of a. We also have the fol-
lowing important property: the boundary of A(a) is
J(R). It follows that if R has several distinct at-
tracting �xed points, then their basins of attraction
share the same boundary, the Julia set of R.

A portion of this paper was motivated by [ 5]
and could be considered an extension of it to the
Riemann sphere. We �rst outline the construction
of the extended complex plane as a sphere. Then,
we maximize the computational e�ciency of the
Schr�oder functions by reconstructing them. Finally
we examine on the Riemann sphere, with the aid
of microcomputer-generated plots, the Julia sets of
the Schr�oder scheme as applied to the set of func-
tions fn(z) = zn � 1 for n = 2; 3; : : :, their roots'
basins of attraction and the dynamics of Schr�oder
maps applied to the one-parameter family of cubic
polynomials presented in [ 2].

2 Schr�oder Iteration Functions revisited

Schr�oder iteration functions are a family of rational
iteration functions which are designed to converge
with order � � 2 to the zeros of a function f . We
de�ne the Schr�oder iteration functions as (see [ 7])

S�(z) = z +
��1X
k=1

ck(z)[�f(z)]k; � = 2; 3; : : : ; (1)
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The coe�cients ck(z) are analytic functions in every
subregion T of C for f 0(z) 6= 0. For � = 2, we get
the familiar Newton{Raphson function

S2(z) = N(z) = z � f(z)=f 0(z):

We observe that Schr�oder's iteration is Newton{
Raphson-like in form. The iteration sequence
zn+1 = S�(zn); � = 2; 3; : : : ; converges locally to
the roots z�i , i = 1; 2; : : : ; deg(f), of f(z) = 0, as
O(jzn � z�i j�) ([ 7], Theorem 6.12c, p. 530). The S�
are truncations of a general in�nite series in f and
it is easily seen that their construction requires the
�rst �� 1 derivatives of f . Thus, the above form of
Eq. (1) is not so useful for generalized computations
and programming of all the S� terms. To eliminate
this inconvenience we deem it necessary to introduce
the following construction.

Starting with h1(z) = 1 we have

�
h1(z)

f 0(z)

�0 1

f 0(z)
=

h2(z)

[f 0(z)]3
;

�
h2(z)

[f 0(z)]3

�0 1

f 0(z)
=

h3(z)

[f 0(z)]5

and, in general,

hk+1(z) = h0k(z)f
0(z)� (2k � 1)hk(z)f

00(z) (2)



for k = 1; 2; : : : ; � � 2: Thus,

ck(z) =
1

k!

hk(z)

[f 0(z)]2k�1
;

and Eq. (1) becomes

S�(z) = z +
��1X
k=1

(�1)k
k!

hk(z)

[f 0(z)]2k�1
[f(z)]k: (3)

We observe that S� uses � � 1 number of hk , k =
1; 2; : : : ; �� 1, and � � 2:

For � = 2, the �xed point condition S�(z) = z
implies that f(z) = 0: For � > 2, it implies that
f(z) = 0, or

��1X
k=1

(�1)k�1
k!

hk(z)

[f 0(z)]2k�1
[f(z)]k�1 = 0: (4)

We shall refer to the zeros of Eq. (4) as extrane-

ous �xed points. Their appearance may complicate
the root-�nding procedure. For more informations
about the behaviour of these points and speci�cally
for the attracting ones which lead to pathological
cycles, we refer to [ 3].

Suppose that f is a polynomial of degree d � 2
and that its �rst � derivatives exist. Then hk; k =
1; 2; : : : ; �, are polynomials and S� are rational func-
tions. The Julia{Fatou theory can describe the pos-
sible types of behavior of the iteration sequence
(Sn�)

1

n=1. To analyze this behavior, the critical
points of S� will play a crucial role.

Critical values of a function f are de�ned as
those values v 2 C for which f(z) = v has a multiple
root. The multiple root z = c is called the criti-

cal point of f . This is equivalent to the condition
f 0(c) = 0. The underlying reason for studying these
special orbits rests in the following theorem of Fatou
[ 6]:
Theorem 1 If R is a rational function having an

attracting cycle, then at least one critical point will

converge to it.

Among the critical points of S� determined by the
condition S0�(z) = 0 are the zeros z�i which are also
attracting �xed points of the S�. These points are
obviously not free to converge to any other attract-
ing cycles. Other roots, which we shall call the free
critical points, are available, however.

Di�erentiating Eq. (3) with respect to z we have
that the condition S0�(z) = 0 implies that

h�(z)[f(z)]
��1 = 0: (5)

Thus, the free critical points of S� are the zeros of
h�.

3 Computational Techniques

The computational e�ciency of an iterative method
is a measure of how much computationmust be done
to arrive at a given accuracy in a root. Because
the computational e�ciency of Schr�oder's method
depends upon the number of evaluations of f and
its derivatives, we describe here how one can reduce
these calculations and produce quickly all of the S�
terms.

If we denote as

�k(z) =
(�1)k
k!

hk(z); k = 1; 2; : : : ; � � 1;

Eq. (3) becomes

S�(z) = z +
�1(z)

f 0(z)
f(z) +

�2(z)

[f 0(z)]3
[f(z)]2+ � � �

+
���1(z)

[f 0(z)]2��3
[f(z)]��1:

We de�ne as

F (z) = f(z)=f 0(z) and G(z) = f(z)=[f 0(z)]2; (6)

therefore

S�(z) = z + (�1(z) + (�2(z) + � � �
(7)

+ ���1(z)G(z))G(z))F (z):

During the development of the images we com-
pute the coe�cients of the polynomials f 0;�k, k =
1; 2; : : : ; � � 1, before the main pixel-scanning pro-
cedure begins. In the pixel-scanning procedure, for
each iteration of a point zn, we compute, f(zn) and
f 0(zn) with Horner's scheme, F (zn) and G(zn) from
(6) and S�(zn) from (7).

The case of the �-parameter space of the cubic
polynomials

p�(z) = z3 + (�� 1)z � �
(8)

= (z � 1)(z2 + z + �); � 2 C ;



which will be described in Section 6, involves greater
di�culty because the coe�cients of the polynomi-
als f 0 and �k depend on the parameter � that
changes for each pixel. So, f 0 and �k must be
computed from the beginning for each pixel in the
scanning procedure. Something like that is time-
consuming: one �k is evaluated recursively from the
hk; k = 1; 2; : : : ; �� 1, and in every iteration we ap-
ply Eq. (2). In this case, the initial evaluation of
�k takes place in a symbolic way; that is, the in-
formation for the creation of each coe�cient of the
polynomial �k is stored according to the parameter
�. Fortunately, we have to multiply only a number
(independently of �) by a speci�c power of � � 1.
That can be seen from the following.

Let ci; i = 1; 2; : : :, be complex numbers indepen-
dent of � or of a = �� 1 and not excluding the case
where some of them are equal. Note that hk are the
polynomials presented in Section 2. We then have

p�(z) = z3 + az � �

p0�(z) = c1z
2 + a

p00�(z) = c2z

and we de�ne

q(z) = z3 + z � 1
q0(z) = c1z

2 + 1
q00(z) = c2z:

For the hk associated with q0 and q00 we have that

h1(z) = 1
h2(z) = c2z

h3(z) = c3z
2 + c4

h4(z) = c5z
3 + c6z

and so on. To compute the coe�cients of the poly-
nomial hk(z) associated with p0� and p00� we modify
the above mentioned hk(z) for k = 1; 2; : : : ; �� 1 so
that

h1(z) = 1
h2(z) = c2z

h3(z) = c3z
2 + c4a

h4(z) = c5z
3 + c6az

and so on. The above analysis of hk, k = 1; 2; : : : ; ��
1, generally gives that

hk(z) =
mX
i=0

cia
izk�1�2i;

where m = (k � 1)=2 if k is odd and m = (k=2)� 1
if k is even. It is obvious from the above that one of
the roots of hk(z) = 0, for even values of k, is z = 0.
Thus, if � is even, the map S�(p�(z)) has z = 0 as
a free critical point.

4 The World is Round

To obtain a metric on C we identify C with the hor-
izontal plane f(x1; x2; x3) 2 R

3 : x3 = 0g in R
3

and proceed to construct the usual model for C as a
sphere.

Figure 1: Stereographic projection

Let S be the sphere in R
3 with unit radius and

centre at the origin so that C cuts S along the equa-
tor, that is

S = f(x1; x2; x3) 2 R3 : x21 + x22 + x23 = 1g

and denote the point (0; 0; 1) (the top point of S)
by B. This point is called the north pole. Another
choice is to take the south pole at the origin. We
now project each point z 2 C linearly towards (or
away from) B until it meets S at a point z� dis-
tinct from B: this means that a line from B to a
point z in the complex plane intersects the sphere
at a point z�. If jzj > 1 then z� is in the northern
hemisphere and if jzj < 1 then z� is in the south-
ern hemisphere; also for jzj = 1, z� = z. The map
�: z 7! z� is called the stereographic projection of C
into S. We may equivalently de�ne �:S n fBg ! C

with �(x1; x2; x3) = (x1 + ix2)=(1� x3). Clearly, if
jzj is `large', then z� is `near' to B and with this in
mind we de�ne the projection �(1) of 1 to be B.
This mapping is conformal (i.e., angle-preserving),
and so the corresponding conformal geometries are
the same. With this de�nition, the identi�cation of
C with S allows us to use them interchangeably, be-
cause � is a bijective map from C to S, and this



explains why C is also called the Riemann sphere:
see Figure 1.

We now use the bijection � of C onto S to trans-
fer the Euclidean metric (in R3) from S to a metric
� on C : this simply means that � is de�ned in the
natural way by the formula

�(z; w) = j�(z)� �(w)j = jz� � w�j:

A gentle exercise in Vector Geometry (which we
omit) yields an explicit formula for �, namely

�(z; w) =
2jz � wjp

(1 + jzj2)(1 + jwj2)
when z and w are in C , while for z in C ,

�(z;1) = lim
w!1

�(z; w) =
2p

(1 + jzj2) :

As �(z; w) is the Euclidean length of the chord join-
ing z� to w�, � is called the chordal metric on C .

5 Julia Sets of Schr�oder Functions applied

to the Polynomials fn(z) = zn�1 and their

Zeros' Basins of Attraction

In [ 5] we examined in the complex plane the Julia
sets of Schr�oder functions S�, for � = 2; 3; : : :, con-
structed to converge to the nth roots of unity and
these roots' basins of attraction. We have furthered
this by examining the above mentioned sets on the
Riemann sphere. With this projection the outcome
is even more astonishing and useful than the usual
examination in the complex plane.

The projection of the image on the Riemann
sphere can be accomplished after three fundamen-
tal steps: �rstly, we project our grid upon the Rie-
mann sphere, secondly, we project the sphere on the
plane using the stereographic projection described
in Section 4 and, thirdly, we produce the basin of
attraction or the Julia set. The �rst step can be ac-
complished by employing the normal projection ac-
cording to [ 1] and observing the sphere from the
south pole. The second step uses the fact that the
interior of the south hemisphere is mapped to the
interior of a large disk around the origin. The third
step was computed by almost the same algorithm
as described in Section 4 of [ 5], except that we did

not take a square as our starting value's grid, but a
circle.

We observe that, for a given polynomial fn, the
complexity of the basin maps increases with the or-
der � of the S� maps and with each increment a
new set of n \petals" appears to be embedded in
an in�nitely self-similar fashion. To have an idea
how this looks like on the sphere, we can rotate it
using the width and length angles assigned to our
program. First the y-rotation takes place and then
the x-rotation.

The white regions in some of the �gures, are not
to be interpreted as part of a basin of attraction
A(z�). Since f 0n(0) = 0, z = 0 is mapped to the point
at in�nity. Points near z = 0 may �rst be mapped
many orders of magnitude away from it, whereupon
a great number of iterations might be required to
bring them back to the z�i , if at all. Therefore,
these grid points would remain as part of the back-
ground which has been plotted as white. We can
control these white regions with an over
ow param-
eter added to the program for this special dynamic
behaviour. Analysis of these plots that considers in-
dividually each iteration procedure S� as applied to
fn appears in [ 4]. For the Figures 2 to 4 the angles
were, in the x-direction, O� and, in the y-direction,
3O�. The over
ow parameter was 1E10 for n = 2; 3
and 1E13 for n = 4.

Case 1. � = 2: The basins of attraction for n =
2; 3 are presented in Figures 2(a), 3(a), respectively.
The Julia set for n = 4 is presented in Figure 4(a).

(a) (b) (c)

Figure 2: Schr�oder basins of attraction for the roots of
f2(z) = z2 � 1 on the Riemann sphere. Blue regions con-
stitute A(1); yellow regions constitute A(�1); (a) S2 method,
(b) S3 method, (c) S4 method.

Case 2. � = 3: The basins of attraction for n =
2; 3 are presented in Figures 2(b), 3(b), respectively.
The Julia set for n = 4 is presented in Figure 4(b).

Case 3. � = 4: The basins of attraction for n =



(a) (b) (c)

Figure 3: Schr�oder basins of attraction for the roots of
f3(z) = z3 � 1 on the Riemann sphere. Blue regions consti-
tute A(1); yellow regions constitute A(�0:5+ i 0:5

p
3); green

regions constitute A(�0:5� i 0:5
p
3). (a) S2 method, (b) S3

method, (c) S4 method.

2; 3 are presented in Figures 2(c), 3(c), respectively.
The Julia set for n = 4 is presented in Figure 4(c).

(a) (b) (c)

Figure 4: Julia sets of the Schr�oder functions applied to
f4(z) = z4 � 1 on the Riemann sphere. (a) S2 method, (b)
S3 method, (c) S4 method.

6 A Walk in Parameter Space

We now focus attention on Schr�oder iteration meth-
ods associated with the particular one parameter
family of cubic polynomials (9) the zeros of which
are z�1 = 1, z�2 = (�1 +

p
1� 4�)=2 and z�3 =

(�1�p1� 4�)=2.

Note the �-dependence of z�2 and z�3 . The poly-
nomials p� are exactly the monic cubics whose roots
sum to zero and which have 1 as a root. Since any
cubic can be transformed into an p� or into z3 by
an a�ne change of variable and multiplication by a
constant, analyzing Schr�oder's method for a general
cubic reduces essentially to analyzing it for the p�'s.

Each point � =Re(�) + i Im(�) represents a dy-
namical system with its own �xed points, possible
attracting cycles and Julia sets. There are regions
in the �-parameter space where attracting periodic
cycles exist in addition to the attracting �xed points
associated with the zeros of p�. Extra �xed points

corresponding to the roots of Eq. (4), shown to be re-
pelling for � = 1, may become attracting in regions
of the �-space. To detect the existence of attracting
cycles which could interfere with the Schr�oder search
for the z�i , we observe the orbits of the free critical
points of the S� functions.

The free critical points ci; i = 1; 2; : : : ; � � 1 for
the �rst three S� functions associated with p� can
be computed by Eq. (5) and are given below:

� = 2, c1 = 0,
� = 3, c1;2 = �p(�� 1)=15,

� = 4, c1;2 = �p(�� 1)=6; c3 = 0:
The free critical points for the �rst ten S� func-

tions associated with p� are presented in [ 5].
The dynamics of each Schr�oder map S� on the

extended complex parameter space was studied in
much the same way as described in Section 5 of this
paper and in Subsection 5.2 of [ 5], except that the
region of the complex �-plane was represented by a
circle grid. The grid point in �-space was colored
accordingly: blue for convergence to z�1, red for con-
vergence to z�2 and green for convergence to z�3 . The
resulting black areas represent regions in parame-
ter space for which additional attracting cycles ex-
isted. The corresponding parameter space maps for
the critical points ci+1 = �ci are obtained by a re-

ection about the real �-axis. For the Figures 5, 7(a)
and 7(b) the angles were, in the x-direction, O� and,
in the y-direction, �9O�. The over
ow parameter
was 1E30.

(a) (b)

Figure 5: Iteration schemes for the one-parameter family of
cubic polynomials p�; (a) S2 method, (b) S3 method.

Case 1. � = 2: Figure 5(a) represents regions
in parameter space for which the critical point c1 is
attracted to z�i . Figure 6(a) is an enlargement of a
region in Figure 5(a), but located on the dark side
of this sphere.

Case 2. � = 3: Figure 5(b) represents regions
in parameter space for which the critical point c1 is



(a) (b)

Figure 6: Magni�cations of Figures 6(a) and 6(b) revealing
Mandelbrot sets for the S2 and S3 methods, respectively.

(a) (b) (c)

Figure 7: (a), (b) S4 iteration scheme for the one-parameter
family of cubic polynomials p�. (c) A magni�cation of a
region of Figure (b) revealing a Mandelbrot set for the S4
method.

attracted to z�i . Figure 6(b) is an enlargement of a
region in Figure 5(b).

Case 3. � = 4: Figures 7(a) and (b) repre-
sent regions in parameter space for which the criti-
cal points c1 and c3, respectively, are attracted to z�i .
Figure 7(c) is an enlargement of a region in Figure
7(b) showing a Mandelbrot-like set associated with
c3.

Because the black shapes that we discovered in
the �-parameter space exhibit the morphology and
the classical characteristics of Mandelbrot sets, it
comes in a non-surprising fashion the following
De�nition 1 The Mandelbrot set associated with

the Schr�oder function S� for the cubic polynomials

p� is the set

M�(�) = f� 2 C : there exist attracting k-cycles,

k = 1; 2; : : : ; for S� other than the roots

z�i of p�(z) = 0g:
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