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Abstract: An approach is discussed to estimate the basin of attraction of stable equilibrium points in linear
systems, operating in a saturated mode (LSSM). The approach is valid for Full Range Cellular Neural Networks
(FR CNNs) too as far as the dynamic properties of both systems are qualitatively similar. The approach is an
extension to previous work on origina l CNNs. The used technique is based on the determination of the so called
tree of regions for each stable equilibrium point and the additional separation of the regions where the
boundaries between different basins are located. The obtained trees for each stable equilibrium point give the
corresponding basin of attraction.
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1   Introduction
Cellular Neural Networks (CNNs) have been
introduced b y Chua and Yang as a local
interconnected network of non-linear dynamic cells
[1-2]. The behaviour of the CNN is defined by the
template matrice s A and B and the template vecto r I.
In principl e CNNs are non-linear dynamic systems
with piece-wise linear non-linearity’s, which give rise
to complex performances. The dynamic properties of
this kind of systems are considered in [3] (and in the
references given there), [4], [5], [6], [11], [12]. A
complete description on the basin of attractions for a
simple 2 cells CNN is given in [6]. In [7] and [8] the
authors suggest an approach, based on the separation
of the state space, to estimate the basin of attractions
for the origina l Chua-Yang CNN.
In 1992, Rodriguez-Vázquez introduced [9] a new
model to overcome several drawbacks related to the
electronic implementation of the original CNN. One
of these drawbacks is  the unbounded state variable.
This may complicate VLSI implementation, whereas
the state variable i n Rodriguez-Vázquez’ Full Range
(FR) model is always bounded between -1 and +1
(normalised), independent of the templates. In [10]
Perfetty proposes a circuit which does not reproduce
exactly the state equations of the origina l Chua-Yang
CNN. This circuit can be described as a liner system
operating in a saturated mode (LSSM). However the

FR CNN and the circuit from [10] can be used
efficiently to implement th e Chua-Yang CNN
dynamics, since they share the most significant
qualitative properties. In what follows we will
consider the FR CNN as a LSSM as far as the
dynamic properties of both systems are qualitatively
similar. Here, the approach in [8] and [9] will be
extended to cover the estimation of the basin of
attractions in LSSM and therefore in the FR CNN
too.
The paper is outlined as follows. In section 2, some
basic results that we will use later are given. In
section 3 we show the applicability of the approach
in [7] and [8] to estimate the basin of attractions in
LSSM systems. In section 4 we give an example to
illustrate the outlined approach and some conclusions
are given in section 5.

2   Preliminaries
The origina l Chua-Yang continuous-time CNN [1] is
described by the non-linear ordinary differential
equation in vector-matrix form:
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Her e x(t)=(x1(t), x2(t), ..., xn(t))
T  is the state vector

at time t , A is the feedback matrix , b represent the



time-invariant inputs and the threshold [1], [5] and
y=f(x)=(f(x1), f(x2), ..., f(xn))

T , where f(.) is the
piece-wise linear function

yi=f(xi)=0.5(|xi+1|+|xi-1|) (2)

The Rodriguez-Vázquez Full Range (FR) model [9]
is described by the system of equations in the
following vector-matrix form:

dx(t)/dt=-g[x(t)]+Ay(t)+b (3)

where g(x)=(g(x1), g(x2), ...,g(xn))
T   and
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Here, the dynamic route of a single cell is like the
Chua-Yang model [1] when m=1. As can be seen [9],
the state variables cannot be larger than +1 or -1 if
m= ∞. If any state enters the boundaries of the
hypercube xi∈[-1, 1], i=1,2,…,n, the state will be
“pushed back” infinitely fast due to infinite m. As it
was stated in [9] the Full Range model provides
correct results, qualitatively similar to those of the
Chua-Yang model (for all templates considered there)
and can be used efficiently to implement the Chua-
Yang CNN dynamics. Furthermore, the dynamics of
the FR CNN are similar to the Perffety circuit [10],
which can be described by a linear system operating
in a saturated mode (LSSM) [11]

dy(t)/dt=ALy(t)+b, y∈∈Dn (5)

where Dn=[-1,1]n is a hypercube i.e.

yi∈[-1, 1], i=1,2,…,n.

In the case of equivalent FR CNN AL=A-I and
equation (5) has the form

dy(t)/dt =(A-I)y(t)+b, y∈∈Dn (6)

Like in [7], [8] and [12] the state space of system (6)
could be partitioned into 3n disjoint regions which are
classified as follows:
a) linear region DO where yi∈(-1, 1), for every i;
b) 2n saturation regions DS, where yi is +1 or -1 for
every i;
c) 3n-2n-1 partial saturation regions DP, where for
some i, yi is +1 or -1 and yi∈(-1, 1) for the others.

In contrast to [7], [8] and [12] the saturation and
partial saturation regions are degenerate e.g. partial
saturation regions are finite (do not extend to infinity)
while the saturation regions are the verteces of the
hypercube Dn. Some basic properties and theorems
[4], [10], [11] for the LSSM (5) are outlined below.

Property 1. If AL is not negative definite, the
eventual equilibrium points in the linear region is
unstable.

Property 2. If the reduced matrices corresponding
to the partial saturation regions are not negative
definite, the eventual equilibrium points in the partial
saturation regions are unstable

Property 3. In the saturation regions: if
min((ALξ+b)*ξ)<0, then y=ξ is not an equilibrium
point of (5). If min((ALξ+b)*ξ)>0, then ξ is an
asymptotically stable equilibrium point of (5), where
the operation “*” is defined as a*b=(a1b1,...,anbn)

T .
Property 4. If AL is symmetric, each solution of

(5) converges to an equilibrium point of (5).
Applying Properties 1-4 to system (6) describing the
behaviour of the LSSM equivalent to FR CNN the
following theorems can be proved.

Theorem 1. If aii>1, every equilibrium point inside
the linear region and the partial saturation regions is
unstable.

Proof: If aii>1, all the diagonal elements of A-I
are positive. Since the trace is equal to the sum of the
real part of the eigenvalues, at least one eigenvalue of
A-I has positive real part. Thus the eventual
equilibrium point inside the linear region is unstable
(Property 1). The same holds for the reduced
matrices corresponding to the partial saturation
regions.

Theorem 2. If the LSSM is convergent and aii>1,
for almost every initial condition the steady state is
binary: yi(∞)∈{-1, 1} for every b.

Proof: If the LSSM is convergent, the trajectory
converges to a fixed point as t→∞ for every initial
state [5]. Owing to presence of noise, unstable
equilibra are not observable in practice and from
Theorem 1 follows that the steady state is one of the
saturation regions i.e. it is binary.

Theorem 3. Let ξ belongs to the saturation
regions DS. An asymptotically stable equilibrium
point y=ξ exists, iff
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Proof: The result follows after applying Property
3 to system (6), as regards to stable equilibra.



Theorem 4. If aii>1, there is one to one-
correspondence between the asymptotically stable
equilibra of the LSSM model (6) and those of the
CNN of equations (1) and (2).

Proof: As proved in Theorem 1, the equilibra
inside the linear and partial saturation regions are
unstable. In practice, only the equilibra that are
asymptotically stable are of interest, i.e. the equilibra
corresponding to any saturation region. They
coincide with the solutions of the linear constrains
(7). These equilibra are the same as those of the
CNN of equations (1) and (2) in the sense that the
corresponding output variables are coinsident.

Theorem 5. A LSSM model of the CNN with a
symmetric template is convergent, i.e.

{ }y t yi i( ) ( ) ,→ ∞ ∈ − 1 1  for i=1,...,n and for every

initial condition.
Proof: See Property 4.

3   Description of the approach
The application of the approach from [7] and [8] for
the case of LSSM (6) is based on Theorems 1-5
given in the previous section. First, following
Theorem 3 one should find the stable equilibrium
points of the system. Later the technique as described
in [7] will be applied in order to construct trees of
regions connected to a stable equilibrium point in
each saturation region. Then for the regions in which
boundaries between different basin of attractions are
located one should find the description of the internal
hyperplanes [8]. These hyperplanes (internal
boundaries) could not be crossed by state trajectories
and then a new subset of regions can be derived using
the separation technique [8]. After a new set of
regions is obtained, one simply should apply again
the approach in [7] in order to construct the final
trees.
Here the saturation regions coincide with vertexes of
the hypercube and the partial saturation regions are
in fact hyperplanes and hyperlines enclosing the
hypercube. As was mentioned the partial saturation
regions have a reduced order in comparison with the
partial saturation regions in the Chua-Yang model.
Therefore both the corresponding calculations for
evaluation the system behaviour on the boundaries
between different regions and calculations for
obtaining the separation hyperplanes in the regions
where the boundaries between different basins are
located are easier than in [7] and [8]. Once
constructed (following the rules in [7] and [8]) the
tree represent exactly the basin of attraction of each

stable equilibrium point. Here it is possible to fulfil
precisely the stopping criteria [7] when the trees are
constructed.

Figure 1: Regions for separation the state
space for given example

4   Example
Let us consider a two cell CNN described by the
system of equations [7], [8]

dx dt x y y
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and the corresponding LSSM
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where yi∈[-1, 1], i=1,2.
The above CNN has two stable equilibrium points,
namely E1=(x1,x2)=(3.5, 3.5) and E2=(x1,x2)=(-1.5, -
1.5). The corresponding stable equilibrium points for
(8) are E1=(y1,y2)=(1, 1) and E2=(y1,y2)=(-1, -1).
The separated state space is given in Figure 1. The
state space and the partitioning are similar to those in
[8] but now the partial saturation regions are four
separation lines and the four saturation regions are
the points (-1,-1), (-1,1), (1,-1) and (1,1). Linear
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region 5 is the same as in [8].
Now, using the obtained set of regions and the rules
described in [7] and [8] we can construct the trees for
the stable equilibrium points E1 and E2. It is easy to
check that the tree for E1 include regions {3, 2, 6, 1,
9, 4a, 8a, 5a and 5b) and the tree for E2 include
regions {7, 4b, 8b, 5c and 5d}. In comparison with
[8] regions 8a, 8b and 4a, 4b are slightly different
than the corresponding ones. For example, region 8b
is now the line between (-1, -1) and (-1/3, -1) while
region 8a is the line between (-1/3, -1) and (1, -1).
This result gives the possibility to describe exactly
the basin of attractions for each stable equilibrium
points E1 and E2.

5   Conclusions
In this paper we suggest a method for determining an
estimation of the basin of attractions for the stable
equilibrium points in linear system operating in a
saturated mode (LSSM). The approach is valid for a
Full Range Cellular Neural Networks (FR CNNs)
too as far as the dynamic properties of both systems
are qualitatively similar. The approach is an
extension of the previous authors work for an
original CNN and is based on determining the so
called tree of regions connected with each stable
equilibrium point described in the previous authors
work.
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