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Abstract:  - This paper presents new structural and training strategies for neural control systems. First, we show that the
existing neural control structures can be brought to a single learning structure. Then, a new FeedForward Error
Propagation (FEP) learning algorithm is tailored especially  for training controllers in a direct manner without the use
of identifier or any form of the plant model. This avoids the uncertainty and the computational and storage
requirements related to the forward model. Finally, The main features of  proposed schemes are evaluated using
simulation examples.
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1 Unified Direct Learning Control 
Structure

The key problem in control systems is to design a
controller which generates the desired control input
so that the behavior of the plant meets a collection of
specifications constituting the control objective.
Usually, these specifications are expressed in terms
of speed, accuracy, and stability. There are mainly,
two classes of control problems:
 Tracking problems in which the objective is to

follow a desired trajectory or a reference model. The
self-tuning regulators (STR) and model reference
adaptive control (MRAC) are the mostly used
methods in such situations.
 Optimal control problems in which the objective is

to extremize a functional of the controlled system’s
behavior. The key issue is constrained optimization.
Dynamic programming is the well known approach
for converting dynamic optimization into static ones.

  The approach proposed in this paper does not
assume any special form for the plant model, but we
are rather interested in unknown MIMO nonlinear
plants. However, for the sake simplicity and
clearness, we use a SISO plant described by the
nonlinear autoregressive moving average (NARMA)
model [1]
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where f : n+m   is a nonlinear function, Yn(k) = [y(k),
y(k-1),…, y(k-n+1)] is the output sequence, Um(k)= [u(k),
u(k-1),…, y(k-m+1)] is the input sequence, and d denotes
the relative degree which represents the pure delay
from input u to output y (resulted from the inertia of
the physical plant). This notion of relative degree will
be used later to explain some training problems of
neural controllers.
   If the control problem is expressed in terms of
trajectory tracking, then the aim is to determine
control law of the form u(k)=g1[Yn(k),yr(k+d),Um(k)] so
that the error  ec(k+d) at the future instant (k+d),
between the plant output y(k+d) and the desired
trajectory yr(k+d), becomes small. This problem is
usually addressed by the STR approach. However, in
the MRAC the control law u(k)=g2[Yn(k),r(k+),Um(k)] is to
be found so that the plant output matches or tracks as
closely as possible a reference model output. Here r(k)
denotes the reference input signal. In the second
family of control problems, the aim is to determine a
control law u(k)=g3[Yn(k),Um(k)] which optimizes some
performance criterion.
   If a neural network is used to implement the
nonlinear control map gi(.), then the key issue is to
find the convenient way to adjust the controller
network weights. The main difficulty here is that of
credit assignment, that is how the error in the plant
output should be used to modify the controller since 
the unknown physical plant lies between the
controller output and the plant output.



   Various strategies have been tried to overcome this
problem. The simplest solution is to train a controller
to imitate a knowledgeable controller (i.e., a teacher)
which already knows how to control the plant. This
supervisor can be a human expert or an artificial
expert (e.g., a rule base) as proposed in [2][3]. Yet,
this solution is not often practical. 
The second approach, referred to as generalized
inverse modeling [4], is to train directly a neural
network to learn the inverse dynamics of the plant
and then to use it as a controller to generate the
control signal. Unfortunately, this approach suffers
from some drawbacks: the learning procedure is not
goal directed and the minimization of the error on the
controller output does not guarantee minimization of
the overall system error, and in a nonlinear system
the mapping is not one-one then an incorrect inverse
can be obtained. Even the scheme proposed in [5],
based on a single network with a switching logic,
inherits the same problems.
 Currently, two main approaches are used to tackle
the problem of training  the controller net. Both of
them make use of an extra network to overcome the
credit assignment problem stated above.
 Reinforcement learning in which a critic network is

trained, using one of the adaptive critic methods, to
provide reinforcement signals to the action network
(i.e., controller) and to assign credit to its individual
actions. The critic network output plays the role of an
error measure in the update of the action network
weights [6][7]. Since reinforcement learning refers
only to information of the kind ‘right or wrong’ to
guide the training process, it does not require the
network to generate approximations to the desired
detailed input-output mappings as in the case of
supervised learning schemes. 
 Forward Modeling approach which uses a

sensitivity model(i.e., a Jacobian or a neural
identifier) of the plant to serve as a channel to back-
propagate the error at the plant output up to the plant
input [4][8][9]. This method is considered as a
general purpose control scheme in the neural control
literature. However, if little knowledge of the
nonlinear plant is available, it is impossible to obtain
an analytical expression for the Jacobian.
Furthermore, the technique of neural identification
can lead to wrong results when the plant involves
significant delays [10]. Briefly, the NARMA model
(1) means that the input at instant k affects the output
only d units of time later. Therefore, if a neural
identifier is used, then the back-propagated error at

the controller output will always be zero since only
delayed values affect the identifier output and hence
no weight updating will be occurred in the controller.
   The authors in [11][12] have proposed the idea of
dynamic back-propagation (through the delay lines).
The back-propagated delayed versions of the error
can be appropriately added to get the error at the
controller net output. Hence, we need to store past
values of error at nodes to implement this back-
propagation and this also requires some prior
knowledge regarding the plant structure.
   Another approach to deal with this issue is to use
dynamic or recurrent neural networks [10][13][14].
These are trained directly as a parallel plant model
but require more complex training algorithms, such
as back-propagation through time [15], and hence are
computationally intensive.
   This is a brief reminder of neurocontrol issues,
proposed schemes, and related limitations which
have motivated our work. The basic idea outlined
throughout the paper is to overcome the credit
assignment problem with an identifier-free approach.
The FEP learning algorithm developed in the next
section is tailored especially  for this purpose. It
computes the output errors (i.e., between the plant
outputs and their desired values) at the controller
inputs and then propagates them forward through the
network to the get the hidden  and the output layer
errors required for the  weight update.
Unified direct Learning control structure:
   In the control literature, the Indirect control relies
on a system identification procedure to form an
explicit (or a parametric)  model of the plant and
determining the control rule from the model, whereas
the direct control uses only an implicit model (or
nonparametric identifier) to adjust  the controller
parameters. In neurocontrol, the identifier is used as a
channel to back-propagate the error at the plant
output up to the controller  output. However, in the
remain of this paper,  we refer to direct scheme to the
identifier-free design which does not need any form
of explicit or implicit model of the plant(Fig.1).
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Fig.1  FEP-based identifier-free learning control structure



  If the control problem is expressed in terms of
trajectory tracking (i.e.,STR [9], specialized inverse
control [4] , or forward modeling [8]), then a neural
network can be used to implement the control map
g1(.) according to Fig.1. The desired trajectory can be
fed through the external input Ix of the controller net.
At each time step the error  ec(k), between the plant
output y(k) and the desired trajectory yr(k), is fed by
FEP though the network for the weight update.
  However in the MRAC systems, the control
problem is expressed in terms of reference model
following. The controller is trained to implement the
map g2(.). It receives the reference input r(k) and
provides a modified value u(k) so that the closed loop
system results in the same mapping as the reference
model. In this paper, we refer to this approach by
‘parallel MRAC’ since the reference model is placed
in parallel with the closed loop system (Fig.2-(a) ).

  

   Another way to solve the model following problem
is to place the reference model in cascade with the
learning structure of Fig.1. First, the reference model
transforms the reference input r(k) to the desired
trajectory. Then, the learning structure is used for the
trajectory tracking task. We refer to this approach by
‘series MRAC’ since the reference model is in series 
with the closed loop system(Fig.2-(b) ).
   The main objective of this new structure is to provide
a common scheme to train controllers. Furthermore, the
parallel  structure leads to a controller which is specific
to the reference model used during training. If the latter
is changed, the controller must be retrained. However
in the series structure, the controller does not depend
on the reference model. Even the latter is changed the
same controller can be used.
   In optimal control, the controller net is trained,
using a dynamic optimization method such as back-
propagation through time [15], to implement a
control map g3(.) which optimizes some performance
criterion J(k). No external input is required (i.e., Ix=0 ).
It only receives either the state vector or delayed

values of the plant output and provides the control
input u(k) in optimal fashion.
   If the performance index J is expressed only in
terms of the feedback variables from the plant, then
FEP-based training can be directly used. However, if
 J contains a term specifying the constraint on energy
consumption( i.e., J(k)=Jy + Ju ) then a hybrid
FEP/back-propagation training can  be used. The part
Jy is propagated forward using FEP, however the part
Ju is back-propagated using the back-propagation
algorithm. The total errors signals through the
network are the sum of the two parts. If  the
controller has a feedback from its output then this can
be used to feedforward propagate Ju  through the
controller network.

2.   The FEP Training Algorithm
   We know that a change in any synaptic weight in a
neural network around its optimal (desired) value will
affect the output of the final layer. The error measure
on the network output JN may be the result of wrong
values of many synaptic weights. Therefore , the main
purpose of a learning algorithm is to assign credit for
each synaptic weight in the network. Back-propagation
algorithm does this by propagating the output errors
backwards through the network.
  In control systems, as we have seen in the previous
section, a sensitivity model is required to serve as a
channel to back-propagate the error at the plant
output up to controller output. However, we will show
bellow that this can be done without of this model.
    Since the controller takes as inputs the plant outputs,
thus the change in these inputs around their desired
values (desired state) will propagate through the
controller network to produce a corresponding change
in the controller output. This is the basic principle of
FEP learning algorithm which recursively calculates
the gradient matrix for each layer starting  from the
input layer and going forward layer by layer until the
output layer is reached. This allows a direct fast
computation of the hidden and output errors required
for the weight update.

 The algorithm derivation:
   Let us consider the typical neural network with L
layer with 0th layer holds the input vector components
(i.e.,u0,j = xj). The output of the jth node in any layer l
(0 < l  L) is given by       
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Fig.2. Bloc diagram of the model reference adaptive control
(MRAC) (a). Parallel  structure (b) Series structure.



where f(.) is the activation,  wl,j,i  is the weight which
connects the ith node in layer (l-1) to the jth node in
layer l, and Nl-1 is the number of nodes in layer (l-1).
In the realm of control the input vector has the general
form X(k) = [Yn(k), Um(k), Ix(k) ] with Yn(k) and Um(k)
represent the feedback information flow, as they are
defined in (1), and Ix(k) stands for the external input
(i.e., yr(k) or r(k) ). In FEP algorithm, the errors on
plant outputs are directly injected via the feedback
lines. Thus, all the components of  error input vector,
E0 = [ e01 , e02 , … ], are set  to zero except the ones
corresponding to the feedback from the plant outputs.
Hence the error function to be minimized can be
expressed by
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where yd
q is the desired value of the qth output of the

plant and ny is the number of the plant outputs. The
weights are updated iteratively according to
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where µ is the learning rate. For an arbitrary weight in
layer l, the ordered derivative +Jp/ wl,j,i can be
expressed by the chain rule as
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where f ‘(sl,j) = d f ‘(sl,j)/dsl,j and the term   +J/ ul,j  is the
sensitivity of J to the output of node ul,j . At the input
layer we have a boundary condition where
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For the internal node output ul,j  (0< l L) , the partial
derivative J(w)/ ul,j   is equal to zero , since J does
not depend on ul,j directly. However , it is obvious that
J does indirectly depend on ul,j  since a change in ul,j

around its desired value will propagate through both
the controller and the plant and thus affects the plant
output. Therefore, using this fact and by extending the
meaning of (6) for the hidden layers, the hidden layer
error signals el,j can be though of as the change in ul,j

around its desired value, ud
l,j ,

           el,j  = ul,j = (ul,j -  u
d
l,j

  ) (7)

Since each output ul,j is expressed in term of the node
outputs of layer (l-1) according to (2), hence the change

ul,j can also be approximated by the changes ul-1,m    

(m=1,...,Nl-1 )   as follows
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Using (7), we rewrite (8) as
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This expression allows us to compute sequentially the
errors at each layer as a linear combination of the errors
of  the previous layer.
   At the beginning of the training process, the weights
are initiated at random values and (9) represents only
rough approximations of the error signals. As the
learning takes place, the weights go to their right
values. The error signal magnitudes decrease. Equation
(9) becomes, mathematically,  more and more rigorous
(since it tends to the differential, el,j = dul,j) allowing,
hence, concise estimations of the errors signals. This
qualitatively explain  the best convergence property of
the algorithm observed during  the extensive simulation
studies.

3.   Simulation Studies
   In this section, our interest is to demonstrate the
efficiency of  the proposed approach. The learning
system of  Fig.1  is quite general and can be applied to
a variety of learning control problems. Here, three
examples concerning the two classes of  control
problems are studies. The aim is to construct direct
neural controllers for nonlinear dynamic plants which
are assumed to be unknown, except some empirical
assumptions concerning their behavior (e.g., stability,
controllability).

3.1  Direct Neural Self-Tuning Control
The basic idea is to train the controller network so that
the composed closed loop system results in an identity
mapping between the desired trajectory and the plant
output. At each step k the controller receives, in
addition to the feedback variables, the desired
trajectory value yr(k) and provides to the plant the
command signal u(k). Then, the difference between
the  actual plant output y(k) and yr(k) is propagated
forwards through the controller, allowing a direct fast
updating of its parameters without the use of



identifier. This makes FEP much suitable for « on-
line»  adaptive control.  Because in adaptive systems
it is assumed that the controller parameters are
adjusted all the time according to changes in the
plant.  However in this paper, for the sake of
simplicity, the plant is supposed to be time-invariant.
In the presence of time-variant plants, the learning
can be carried  on-line.
 The following example discusses  the control of a
nonlinear multivariable plant with two inputs and two
outputs described by
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The controller network, with the 15 neurons in the first
hidden layer and 10 units in the second one, was
trained during 10000 time steps using  random inputs
yr1(k)  and  yr2(k) uniformly distributed in the interval
[-2,+2].

Fig.3 shows the outputs of the controlled plant and the
desired trajectories. One can see the good tracking
performance of the control system for different forms
of the desired trajectories

3.2    Direct Series Neural MRAC
   In this section, simulation results for the control of
a nonlinear plant using the proposed series MRAC
are reported. The plant is described by the following
model
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The reference model is described by
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The aim  is to choose u(k) so that limk  y(k)-ym(k) =0.
The controller net, with the same structure as the one
used above, was trained  during 8500 time steps using
a random input r(k) uniformly distributed in the
interval [-1,+1].

Fig.4 illustrates the FEP-based controller performance.
One can see that the reference model and the plant
outputs are almost the same. This shows the best
generalization and convergence properties of  FEP
algorithm associated with less computation and
mathematical representation complexities. This confers
great promise for FEP in the realm of on-line neural
adaptive control of time-variant nonlinear dynamical
plants.

3.3        Direct Optimal Control of the Inverted
Pendulum System

    The dynamics of the inverted pendulum are
characterized by 2 state variables (angle of the pole
with respect to the vertical axis) and  . (angular
velocity of the pole). The control goal is to stabilize the
pole in the vertical position by supplying an
appropriate force to the cart. The neural controller, with
10 units in the first hidden layer and 5 units in the
second one, was trained for 250 trials using self-
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(a) desired trajectory yr1 ( ) and the plant output y1 (--)
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(a) desired trajectory yr2 ( ) and the plant output y2 (--)
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Fig.3. Illustration of the tracking performance of FEP-
based self-tuning controller for a multivariable plant.
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Fig.4.  Outputs of the reference model ( ) and the
controlled plant  (---) for a reference input :

     r(k)= 0.25 [sin(2 k/10)+ sin(2 k/30)+ sin(2 k/60)]
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learning method [16]. At the end of each trial, the error
on the state is propagated forwards through the
controller and the network weights were updated
according to FEP equations.

Fig.5. Variations of the angle  ( ) , the angular velocity  (---
), and the force F (   ) for the initial conditions(  [ ],

[°/s]): (a) (35,45) (b) (-35,-45). The « M » value corresponds to
12 N, 45°, and 100 °/s  for F, , and ° , respectively

.

Fig.5 illustrate the obtained simulation results. One can
see that the controller stabilizes the pole in the desired
state during short periods of time. This can be
explained by the efficiency of  FEP in the error
calculations and, in the other hand, by  the forward
model uncertainty of indirect self-learning.

4.  Conclusion
  With FEP algorithm, we have proposed a new
approach for designing neural controllers. It provides
credit assignment in a direct manner without the use of
identifier or any form of the plant model. This  greatly
simplifies the learning complexity and avoids the
forward model uncertainty and limitations. The
simulation results show the best generalization and
convergence properties of FEP algorithm associated
with less computation and mathematical representation
complexities. Although in this paper, we have shown
only how to construct direct neurocontrol methods,
FEP can be used to other kinds of learning systems.
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