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Abstract: A piecewise linear (PWL) function approximation scheme is described by a lattice algebra of modified
operators that allows for the interpolation of PWL function vertexes. A new recursive method called Centred
Recursive Interpolation (CRI) based on such modified operators is analysed for successive function smoothing and
more accurate approximation. This approximation method, simple but accurate as few parameters are needed for
function definition, turns out to be a natural quadratic approximation. Due to the properties that neuro-fuzzy systems
with gaussian-like non-linear functions show, CRI is applied to the approximation of a sample gaussian function with
width control. Computational simplicity and parameter programmability have been central objectives. As PWL
functions are generated by means of lattice operators in a recursive manner, this approximation method is particularly
suitable for hardware implementation of function generation circuits.

Key-Words: neuro-fuzzy system, PWL function, lattice operator, recursive linear interpolation, membership function,
gaussian function, function generation circuit.

1 Introduction
Fuzzy, neural and mixed (fuzzy/neural) systems,
which we are going to refer to generically as neuro-
fuzzy systems, are being used successfully in both
scientific and engineering problem resolution.
Traditionally, neuro-fuzzy computation has been made
on general purpose processors, but in the last years
many applications where high speed, low power
consumption or portability must be assured, are
demanding for more efficient implementations that
require specific hardwired solutions. In the
implementation of such structures there is a
requirement for non-linear functions, membership
functions or activation functions, that must be
generated efficiently in terms of computation time and
occupied silicon area.

Spline approximation, and more specifically
piecewise linear (PWL) function approximation, is one
of the most used computational schemes for non-linear
function generation circuits [1-5]. PWL functions are
adequate for the use of max (∨) and min (∧) operators
that, due to their algebraic characteristics, can be
named as lattice operators [6].

In this paper a new recursive method for function
approximation based on the use of modified lattice

operators (MLO) is proposed. Such operators are the
lattice operators ∨ and ∧ with interpolation capabilities
for function smoothing. The aim is to use this general
framework in future implementation of membership
function circuits (MFC) for fuzzy systems and in
artificial neural network (ANN) nodes, specifically in
radial basis function networks (RBFN). The
application of this method in these fields must lead to
the simplification and speeding up of the computation
or generation of the mentioned functions when high
precision, high speed and low area implementations
are needed, overcoming the actual limitations in these
areas.

2 Modified lattice operators with
recursive interpolation

We call modified lattice operators (MLO), max and
min operators with interpolation capability for PWL
function vertex smoothing. Max modified operator can
be defined as follows,

),y,y(hyyy ∆∨∨= 21210  (1)

where h is the interpolation function. For a linear
interpolation, h is
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Although (2) can be used in other circumstances, we
will restrict ourselves to the case where

2121 /== αα   which will be called Centred Lineal
Interpolation (CLI). Then,
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where the unique parameter is 3αλ = . The

interpolation factor λ  will be, for simplicity, made
equal to 1/2. With this assumption, and in the absence
of interpolation depth ( ∆ = 0 ), we force the
interpolation function to go through the vertex
generated by the intersection of the lines y1 and y2,
point C in Fig.1. The most conspicuous characteristics
of the lineal interpolation function for y(x) affine
inputs are:

i) Centred: Equation (1) can be written as
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As shown in Fig.1, the segments
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and
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included in the interpolation region constitute two
opposed sides of a parallelogram centred in C. Such
structure is completed by the segments of height ∆ and
therefore ppp == 21 . This property is due to the

election of 21 αα = . If 21 αα ≠  is chosen, then
conditions for asymmetric bevels, which will not be
considered here, are obtained.
ii)  Depth and projection of the bevel: The depth of the
bevel is ∆λ ; ∆/2  if  λ=1/2. The projection of the
bevel is ppp 221 =+ . This region defines a local or
short-range interaction between y1 and y2.
iii)  Associative property verification: We can define
the linear interpolation under study as

( ) ( ) ( )2121interp in0 y,yy,ymaxy
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being ∨∆ the above mentioned modified max operator.
Let yj(x), j=1,2,3 be three affine non-concurrent
functions such that y2 forms vertexes to be interpolated
with y1 and y3 ,  and  2p12 , 2p23 the respective
projections of these interpolated vertexes. We say that
∆ is sufficiently small if

23231212 pxpx −≤+  (8)

where ( ) ( )122121 xyxy =  and ( ) ( )233232 xyxy =

In other words, the intersection of the interpolation
functions does not take place above the straight lines
that generate it. If this restriction is satisfied it turns
out that
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The observance of this property is substantial in lattice
operations with various operands. We can define,
under the same condition

( )
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that can be generalised for more inputs. Expressions
(7) and  (8) are functionally equivalent under the
restriction of a sufficiently small ∆.
iv) Affine n-dimensional inputs: The above mentioned
characteristics and properties are still valid for affine
yj(x) inputs where x=(x1,x2,...,xn)

T. Particularly for each
xj variable, considering x1,...,xj-1,xj+1,...,xn as constants,
these properties are verified.

All the above can be applied to a minimum selector
with interpolation or modified minimum operator (¼∆)
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Fig.1 Max modified lattice operator. Centred Linear Interpolation
of the vertex formed by lines y1 and y2.



if ½ by ¼ is substituted in (1) and we force 03 <λ=α
in (2) to obtain the CLI.

2.1   Centred Recursive Interpolation (CRI)
The interpolation function described above can be
generated recursively, allowing a progressive function
smoothing
and enhancing accuracy of approximation through a
repetitive computational scheme. Therefore, a complex
and consecutively more precise approximations can be
achieved by means of a simple computational cell, as
we will see immediately.

Being h1 the function h(y1,y2,∆) for λ=λ0,
expression (1) can be rewritten as

211121211 ghgh)yy()y,y(max , =∨=∨∨=∆  (11)

This interpolation, hereafter level 1 interpolation
(q=1), is shown in Fig.2 (b). The output after applying
a second level interpolation (q=2) to the second
operand in (11) is shown in Fig.2 (c):
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This way, applying consecutive interpolation levels, a
recursive interpolation scheme is obtained as shown in
Fig.3. This scheme doubles the number of vertexes of
the polygonal for each epoch or interpolation level, as

depicted in Fig.2:
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where g0=y1, h0=y2 and λ0=1/2.

As if )( qq 20 1−>> λλ the dichotomic growth of

the number of vertexes in the function is impeded, we
can choose the mean value for λq,
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Expression (16) together with (14) and (15) define the
Centred Recursive Interpolation (CRI). All the
information about the interpolation depth has been
transferred to ∆. As a result of this, the main
parameters for the IRC are the couple {∆,q}. All
products in this recursive scheme are powers of two,
what remarkably would simplify a digital design.

The extension of this procedure for minimum
selectors or intersection with recursive interpolation is
straightforward.

2.2   CRI Approximation of y=x2

CRI has been applied successfully to the
approximation of various sample functions. The
approximation of the function y(x)=x2 through RCI is

y1=g0

y2=h0
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λ0∆ λ1∆
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       (a) (b)    (c)
Fig. 2 Recursive interpolation and dichotomic growth of the number of vertexes. (a) Maximum and first interpolation
function h1. Interpolation level: q=0; (b) q=1; (c) q=2.

      Fig. 3 Schematic  representation of the recursive interpolation for the maximum modified operator.



of particular interest, and is analysed with detail
afterwards.

Let the initial affine functions be

010 == yg   (17)
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in D=[0,1]. Notice that if qq gx)x( −≡ 2ε , then

0)1()0( 11 == εε . Applying CRI:
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Let δ be an increment in x. Regard that:
i) δ,jx∀ , the tangents to y=x2 at xj-δ and xj+δ

intersect at x=xj and at this point
22 δε =−= qjjq gx)x( . Therefore, if ∆=1/2, D

results successively divided in 20,21, ...,2q sections
at whose ends the error is null, as it is shown in
Fig.4.

ii)  If x is a finite length binary word 0.b1b2...bn, n
iterations are enough to cancel the error.
Moreover, if q<n it is always possible to obtain a
optimum value of ∆ (∆opt>1/2) which minimises
the error.

iii)  If x is real, infinite iterations are needed, but as
the interpolation level increases 21opt →∆  and

the error tends to zero.

Fig.5 shows the generated functions at the three first
interpolation levels with ∆opt. The optimum value of  ∆
has been obtained solving the optimisation problem

{ })(Emin P   (21)

dx),x(E
x
∫ ∆= 2ε   (22)

where
)q,,x(g)x(f ∆−=ε   (23)

and P=[∆] is a one-dimensional parameter vector, as it
can be asserted that the approximation improves as q
increases. In Fig.5 it can be observed that the error is
distributed homogeneously through D. This fact
evidences that the RCI method is a natural quadratic
approximation.

   (a)         (b)
Fig. 5 (a) CRI approximation of x2 with the optimum value of the
depth parameter (del≡∆). (b) E(∆), see (22) and (23), for the first
four interpolation levels: q=0, 1, 2, 3, 4.

3 Approximation of a Gaussian
Function with Width Control

Besides in many other applications, gaussian functions
are widely used in the resolution of approximation
problems, and specifically in the application of neuro-
fuzzy systems as functional approximators. It is well
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Fig. 4 CRI approximation of x2 with ∆=1/2 and equidistant
cancellation of the error.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
x^2,g1,err0;q=0

0 0.2 0.4 0.6 0.8 1
-0.2

0
0.2
0.4
0.6
0.8
1

x^2,g2,10err1; q=1, del=0.5513

0.2 0.4 0.6 0.8 1

0.005
0.01

0.015
0.02

0.025
0.03

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1
x^2,g3,10err2; q=2, del=0.5128

0.2 0.4 0.6 0.8 1

0.01

0.02

0.03

0.04

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
x^2,g4,10err3; q=3, del=0.50321

0.2 0.4 0.6 0.8 1

0.005

0.01

0.015

0.02

0.025

0.03

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
x^2,g5,100err4; q=4, del=0.5008

0.2 0.4 0.6 0.8 1

0.005

0.01

0.015

0.02

0.025

0.03



known that ANN’s with one hidden layer of gaussian
nodes are capable of approximating continuous
functions with arbitrary precision [7,8]. RBFN’s,
which have the property of universal approximation
[7-10], typically use gaussian functions as radial basis
functions. An additive fuzzy system with gaussian sets
reduces to a RBFN with gaussian nodes [11].
Moreover, it has been demonstrated that a fuzzy
inference system with gaussian scalable membership
functions (MF) and operating with product inference
and implication, and with height defuzzyfication is a
universal approximator [12]. In [13] similar results
have been obtained for an additive system with center
of mass defuzzyfication and product implication.

In conclusion, generating gaussian functions with
different variances in a simple and fast way, would
endow neuro-fuzzy systems with notable versatility
and range of applications. This fact motivates the
selection of this widely used function shape as a
representative example of the applicability of RCI
method in neuro-fuzzy computing structures.
Originally this study is not biased by any specific
design option (software, digital or analog hardware),
although an VLSI implementation has been borne in
mind as it would be favored by some characteristics of
the method.

The gaussian function taken as reference is a
function centered in the origin point, given by the

expression:

( )  /xexp

1
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Next objectives has been defined as imperative:
Objective 1. Computational simplicity: The design
must be simple in a computational sense, given the
cost/speed implications (area/speed in the case of
the VLSI). In this sense, the use of a recursive
interpolation method (CRI) fundamentally based on
a lattice structure, provides a very appropriate
framework, especially interesting for physical
circuit design.
 Objective 2. Normality: Normality, as defined in
fuzzy set theory, is a requirement of the fuzzy
problem if the logical-linguistic nature of the
system is to be kept.
Objective 3. Programmability: The generation
scheme must allow for the modification of the
parameters that define the width and the centre of
the gaussian function.
We will start from a simple structure such as that

shown in Fig.6, formed by the two tangents to the
curve in its points of inflection y1(x) and y2(x), and the
abscissa axis y=0, where
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One sole parameter m=m(σ) characterises both
tangents, and this is the parameter which controls the
width of the function. The centre of the gaussian
function, for computational purposes, can be easily
established in any point cx of the input domain by a
simple modification of equations (23) and (24):
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Fig. 6 Reference gaussian function and initial PWL structure
with three vertexes: P, Q and R

Fig.7  CRI scheme for the initial structure shown in Fig. 6



Fig. 8 Optimum values of the depth parameter (∆opt) for 13 values
of the parameter m in the interval given by (30), and null slope
linear approximation (mean value) for the first four recursion
levels.

What we want to know now is how the CRI
parameter ∆ must vary to achieve an optimum
approximation to the gaussian function for different
widths. That is, we want to identify ∆opt(m). To
establish the working range we will take the domain
D=[0,1] as our universe of discourse, and suppose a
partition of 8 gaussian functions of equal width for the
aforementioned universe. The width of each function

in its points of inflexion is )2/2( σ . Therefore, the

mean value mm of m(σ) obtained for the mentioned
partition is:
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The working range has been chosen as that comprised
between one half of and twice the central value of m,








∈→







∈

e
,

e
m,

328

8

2

32

2σ (30)

The recursive interpolation scheme is shown in Fig.7,
where gi represents the function interpolated in vertex
P for q = i, gi' is the function interpolated in the three
vertexes, h is the interpolation function for vertex P
and h' is de interpolation function for vertexes Q and
R.

The optimisation problem defined in (21) and (22)
has been solved numerically for the same value of ∆ in
the three vertexes P, Q and R and for 13 values of m
in the range defined by (30). The values of ∆opt are
presented in Fig.8 for the first four interpolation levels.
This optimum value, although with certain random
deviations, is constant (mean value) for all m, allowing
us to store one sole parameter ∆1 for all widths.

Nevertheless, ∆opt does not assure the normality of
the function. As CRI method assures that the height of

the interpolated function is fixed in the first
interpolation level, the solution to the optimisation
problem with normality constraint is trivial, resulting
in:
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This value is not optimum from error minimisation
point of view, but it ensures function normality. If ∆nor

is used in the interpolation of the three vertexes, the
resulting function for q=4 is shown in Fig.9, where it
can be observed that error is negligible in the
surroundings of the maximum but is drifted towards
the “tails” of the function.

Obviously, ∆opt(P)≠∆opt(Q)=∆opt(R). Fig.10 shows
the approximation for q=4 with ∆(P)=∆1=∆nor and
∆(Q)=∆(R)=∆2=∆opt for four different widths. The
error in the maximum of the function is null and less
than 2% in the worst approximated point. This option
is more accurate but an extra depth parameter ∆2 must
be stored.

4 Conclusion
The function approximation method proposed in this
work is based on the lattice structure for PWL function
definition given in [6]. It consists of a recursive
algorithm that operates with modified lattice operators,
that is, maximum and minimum operators with linear
interpolation for function smoothing. In the present
work we have chosen and developed a centred
symmetric interpolation procedure for its simplicity
and easiness of computation. Nevertheless,
asymmetric options are also possible. CRI shows itself
to be a simple and efficient method for approximating
functions, accurate even with minimum initial
structures and relatively low recursive levels. It must
be highlighted that CRI is a natural quadratic
approximation scheme.
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The application of the method to membership
function generation or activation functions represents

an interesting alternative to actual circuit designs for
neuro-fuzzy structures to overcome their performance
limitations. The use of lattice operators and the
recursive nature of the interpolation algorithm simplify
remarkably the function computation. In consequence,
this is a suitable method for high speed/low area
hardware implementation of neuro-fuzzy circuitry.

Due to the properties as universal approximators
that certain neuro-fuzzy systems with gaussian-like
functions show, CRI has been applied to the
generation of this type of functions. The
programmability of the function has been a central
objective of the design, as it is of a key relevance for
neuro-fuzzy systems with learning capabilities or
operating in changeable environments. Therefore, this
work can be seen as a first step theoretical study
previous to a future implementation of neuro-fuzzy
electronic circuits based on this approximation
technique.
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Fig.10 Gaussian function, CRI approximation and error curve
magnified by ten for q=4 using two depth parameters: ∆1=∆nor and
∆2=∆opt.  The approximation is shown for four different widths:
m=8/√e, m=16/√e, m=24/√e and m=32/√e.
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