N-Delta Builder : A Multiplatform Graphical Rapid
Prototyping Tool for the Development of Voice Synthesis

DIONYSIOS B. POLITIS
Department of Informatics
Aristotle University of Thessaloniki
Thessaloniki, GR-540 06
GREECE

dpolitis@csd.auth.gr

http://www.csd.auth.gr

Abstract: - N-Delta Builder is a graphical, extensible, multimodal, platform-independent application for
interactive, real- time design of voice signals. It consists of two parts: the server part, which is a physically
modeled voice synthesizer and the graphical client part which drives in-situ the server. This paper apart from
describing the arity N-Delta interfacing protocol between the client and the server, optimizes the process of
synthesis by implementing a multi-platform, event driven Tool which is capable of visualizing subtle voice
quantity and quality elements and handling as part of a generalized object oriented hierarchy musical events

that describe or accompany the lyrics.

Key-Words: - Rapid Prototyping, Music Interfaces, Formant Synthesis, Music Delta Systems, Tcl/Tk.

1 Introduction

The major issue in the technology of Synthetic
Speech systems is the ability to reproduce naturally
and adequately synthetic speech. As far as
naturalness is concerned, the current research trend
focuses in physical modeling [1], i.e. in simulating
the voice production mechanism as more accurately
as possible.

On the other hand, the variation of human speech
according to prosodic features and the musical
reproduction and accompaniment, have to do with
another more subtle “dimension” of pitch
fluctuation, the melodic one. A “natural” synthetic
utterance is not adequate unless it imprints precisely
the melodic line.

When the concept of melody is used, a coarse
description of the pitch fluctuations is perceived
according to the staff lines. However, the musical
patterns have been shaped and categorized through
practice in many musical traditions rendering
idiomatic prosodic and melodic patterns. This results
to the following major issues in composing synthetic
melodies [2][3]:

e the scales that are used in vocal reproduction
may differ from the well-tempered ones used by the
usual music notation in using smaller or
incompatible intervals,

e vocal transitory phenomena cannot be depicted
by using coarse descriptions of intervalistic pitch
bending, and

e voice “quality” issues arise out of fixed
idiomatic pattern performance.

In order to resolve these issues we have devised
object oriented, real-time formant synthesizers that
are capable of reproducing voice entities of big
resolution in their time-frequency representation.
These entities are perceived as voice quanta that
virtually express a voice interval that is hardly
audible or distinguishable. The synthesizer is
accompanied by a multi-modal and multi-platform
graphical user-interface which is the basic tool for
the voice synthesis improvisation. This module
serves as a client to the synthesizer-server. The
graphical client has been developed under the
Tcl/Tk environment in Unix and WinXX
environments and incorporates visual technology to
describe the melodic improvisation in terms of
scales, notes, transitional phenomena and phonemes.
The combined information is deciphered in a
symbolic vector language of N arity [4] which is
transmitted either locally or via TCP/IP sockets (if
the client and the server are not on the same
computer) to the synthesizer module in order to
produce the melodic output.

2 The Hierarchy of the Object

Oriented Formant Synthesizer
The entities that are exchanged in the client-
server multimedia framework are the phonemes

of the uttered melody. Although the phonemes are The oscillator described in fig. 3 is the Z transform
the basic units of speech, they are not the atomic of the two pole-circuit described by Gold and

entities of the server module. The server uses two Rabiner [5]:
basic vocal sources, one for consonants (white noise s .5
generator) and one for vowels (impulse generator) H(s) = S 0
[5], as seenin fig. 1. (s=s,)s-35,)
where
Progranmsble Filters s =-0+jo,
Sy = ~On + j, KOU S, = -Gy - joO,. 2)
Tipudso genertor Fiter | [Fiter | [Filler m
4@—0 F % E A B
—¥ + —h Z-l >{>}
> KA
Digital filters for ggin control i

White noise generator
4@_; Pe |—) Zeo
L

-1
V4
Fig. 1. Diagram of a cascaded formant synthesizer unit. i

The shaping of the vowels takes place by passing Fig. 3. Digital filter of a second order oscillator.
through a filter bank of at least 3 digital filters with

the characteristics of the naturally uttered phoneme. In (1) and (2) the analog pole circuit is described in

B its frequency domain, i.e. with its Laplace transform.
N 0 R The digital equivalent is readily calculated:
Fl Az

H@z) =K, (1 + Bz '+ Cz?)

©))

with
2 2
O_n + a)n
= " @ n — -0, 2
K, - . A= e sin(w,T)

B=¢7", C=2""cos(w,T). (4
Thus, the pole circuit of fig. 3 is described by (5).
YnT] = K, AX[nT-T] -By[nT-T] - Cy[nT-2T1 (5)

I I where T =£", the sampling period [5].

)) Following these relations, the basic object of the
Fig. 2. Formant shaping. hierarchy is defined as:

The digital oscillator formed by the two zero and
two pole filter bank is used to produce the resonance
and anti-resonance characteristics of the vocal tract.

class Object{

public:

int MIDI_controll;

int MIDI_control2;

int MIDI_control3;

int MIDI_mod_wheel;
int MIDI_after touch;
protected:

Object();

~Object();

¥

/* Sampling rate */
#define SRATE 22050.0
/* States for Envelopes, etc. */
#define ATTACK 0
#define DECAY 1
#define SUSTAIN 2
#define RELEASE 3

Fig. 4. Basic class definition of the primarily
audible object.

As it can be seen, there is MIDI compatibility and
phenomena like glissando [2] can be expressed in
terms of control sequences like ATTACK, DECAY,
SUSTAIN etc. When it comes to voicing, this
approach is insufficient, and derived classes are
incorporated in order to shape the envelope of the
synthetic utterance. Various transitory and “quality”
phenomena have been reproduced by using
elaborate time-frequency descriptions [6][7][8].

3 Visual Programming at client level
The shift towards black-box reuse of framework
components has been implemented at the upper level

of the application. N-Delta Builder is a completely
graphical tool for voice synthesis. The main screen
of the application can be seen at fig. 5.

As seen in fig. 5, the main screen is divided in
three regions: The menu bar, the button region
and the graph region. The menu bar contains all the
commands not related to event manipulation. It
contains file manipulation commands, sound output
commands and various general commands. The
button region contains the indicators, buttons and
entry fields relating to event manipulation. Finally,
the graph region apart from containing the visual
representation of the events sequence, serves as an
alternative way of event manipulation.

The conceptual space of the application is the
graph region which is a schema of the time-
frequency curvature of the fundamental frequency
FO0. Although the FO plot is seemingly a continuous
curve, neither intonation nor harmony is.
Consequently, inherent to prosody is musical
scale quantization, which defines the notes and
the musical system. Since the usual music
notation relies on staff views, the majority of
interfacing protocols exchange MIDI sequencer
data extracted from staff notation, with
interactive editing capabilities. This means that
musical events correspond to quanta of the
time-frequency domain based on the centroid
description of a note event by a key number, a
velocity number and a duration one. These
elements are included in the basic class
definition for compatibility reasons with the
MIDI interface which is used to drive the
instruments (fig. 4).

Synthesis v.0.9 - D:/Music ResearchiN-Delta/lLatest veritest.syn

: File Action %iew Options Help
B Insert a Note Alt+N 5 _j
4
f Insert a Pause Alt+P

| 6 Insert a Transpose Alt+T

o

v Insert a Check Alt+C

g Edit Current AIt+E

m Delete Current Ctri+X |

ﬁ Undo Last Change Ctri+Z

|;:l£3urre fit Ewent: 1 2

|j“TDtEl| évents: 15

I |

Fig. 5. The user interface of N-Delta Builder.

AN

A
E ron

e =444

E rourem

Fig. 6. A part of lyrics and staff notation from traditional Greek carols.

For the reasons explained previously, the
definition of a note in the N — Delta [4] interface is
somewhat different. For instance, the measures of
the carols at fig. 6 are transcribed in the N-Delta
language with the following sequence of musical
events
Sd [d:12,10,8,12,12,10,8],2), A(+4, 1) [e],
A(0,1,pi) [rou], A(-1,1) [re], A(0,1,pi) [rou], A(-1,1)
[re], A(0,0.5,sigma) [em], A(+1,0.5), A(-1,1) [e],
A(-1,1) [rou], A(-1,2) [em], C(+1) (6)

where

S(d,2) : defines the diatonic scale, and the second
note of the middle octave; the diatonic scale used is
defined by 72 cents, with scale quantization of 7
notes [12,10,8,12,12,10,8],

A(+4,1) [e] : is an alteration of a fifth, a time
duration of a noire (') and [e] is the corresponding
to the note phoneme /¢/ according to the notation of
the International Phonetic Alphabet,

A(0,1,pi) [rou] : means the same note level for
morpheme [rou] corresponding to phonemes /[r//v/
and pronounced with the quality characteristic of a
petasti (see reference [2]),

A(0,0.5,sigma) [em] : is the same note with the

previous one, with a time duration half that of a

noire, and the utterance of morpheme [em],

analyzed to phonemes /e//m/; this note and the next

are bound with the sigma operator, which implies a

prolonged utterance of the same morpheme [em].
The phonemes used by the N-Delta interface are

described with their first 4 formants. In table 1 the

description of phoneme /¢/ can be seen.

In sequence (6) the arity of the interface is :

N=max (dim vy, dim v,, ..., dim v,) (7)

where

vl = (+4, 1)

v2 = (0,1,pi)

Although sequence (6) has an arity of 3, N-Delta
Builder can cope with far more complicated scores
ranging up to arity of 8. Presumably, the musical

[Delta

arity of a morpheme has to do with its expected
performance complexity.

In order to compose sequence (6) with the N-
Delta Builder, the Note Attributes menu is invoked
which can concisely assist voice synthesis, as it can
be seen in figure 7.

The curve that corresponds to each note operation
on FO will be imprinted on the curve of the melodic
sequence, as seen in the graph pane of fig. 5. After
the melody is given at the user interface level of fig.
5, the compiler is invoked yielding the sequence
described at (6). This sequence will be pipelined to
the real time synthetic singer and a voiced output

0
L I
—Duration B
(sl U ERE A0 T 0F5
ks
Rk e Tl
h
* +0 +1 " +2 T +3 o+
G
| —Accent Dperator(s)
: & MNaone 025 I
e |EE JE] B
| u
||
:: & 025 H o Bl
¢~ o] s B 4
I} (i}
Hie
DK Cancel

Fig. 7. Selecting note attributes according to the N-Delta

will be produced.

4 Overview and future directions

Although only the basic functions of the N-Delta
Builder prototype have been presented, the other
functions not exploited are easily deduced. Lately,
many products have been presented that incorporate
visual interfaces [7][8]. The basic difference in their

Phoneme | ASCII description | formants (Hz) Frequency width | Relative amplitudes (dB)
/el ehh 515 0.977 0
1805 0.810 -10
2526 0.875 -10
3103 0.400 -13

Table 1. Estimated formant values for a phoneme /¢/ pitch levels out of 5 speakers samples. The frequency
width of the formants is not denoted in Hz but as it is inserted into the synthesizer, i.e. as the pole coefficient
(exp(-nBf.™)).

approach is the encompassed interface. Most of
them are set out for the usual music notation without
handling capabilities for alternate music sources
[6][7]1[9]. The N-Delta prototype is a model for the
standardization of future musical interfaces on a
more 'chromatic' basis for their vocal performance.

References:

[1] Cook, P.R., “SIGGRAPH: Synthesis ToolKit in

C++, Version 1.0”, Department of Computer
Science, Princeton University, May 1996.

[2] Pikrakis, A., Theodoridis, S., Kamarotos, D.,

[3]

[4]

“Recognition of Isolated Musical Patterns in the
context of Greek Traditional Music”, Special
Session: Voice/Audio Processing Systems, Third
IEEE International Conference on Electronics,
Circuits and Systems ICECS ’96, Rhodes, Vol.
11, pp. 1223-1226, October 13-16, 1996.

Spyridis, H.C., Politis, D.V., “Information
Theory Applied to the Structural Study of
Byzantine Ecclesiastical Hymns”, ACUSTICA,
Vol. 71, No. 1, May 1990, pp. 41-49.

N. Mastorakis (editor), Recent Advances in
Information Science and Technology, World
Scientific Pub. Co., 1998. (Politis, D. et al., “A
Voice Scripting Language Interface of N-Arity
for an OO Formant Synthesizer”, pp. 247-251).

[5] Klatt, D.H., “Software for a cascade / parallel

[6]

formant synthesizer”, Journal of the Acoustical
Society of America, Vol. 67, pp. 971-995, 1980.

Politis, D., Tsoukalas, A., Linardis, P.,
“Interpretation of Byzantine Music Notatuion as
Adaptive A-Modulation”, Special Session:
Voice/Audio Processing Systems, Third IEEE
International Conference on Electronics,
Circuits and Systems ICECS ’96, Rhodes, Vol.
I1, pp. 1219-1222, October 13-16, 1996.

[7] Politis, D., Tsoukalas, A., Linardis, P., “VIDI-A

Voice Instrument Digital Interface for Byzantine

[8]

Music”, International — Computer Music
Conference ICMC97, Thessaloniki,
Proceedings, pp. 403-407, September 25-30,
1997.

Porcaro, N., Jaffe, D., Scandalis, P., Smith, J.,
Stilson, T., Van Duyne, S., “SynthBuilder: A
Graphical Rapid-Prototyping Tool for the
Development of Music Synthesis and Effects
Patches on Multiple Platforms”, Computer Music
Journal, Vol. 22, No. 2, Summer 1998, pp. 35-
43,

[9] Mastorakis, N.E., Gioldasis, K.D., Koutsouvelis,

D. and Theodorou, N.J., © Study and Design of
an Electronic Musical Instrument which
accurately produces the spaces of the Byzantine
music”, I[IEEE Transactions on Consumer
Electronics, Vol.41, No.1, pp.118-124, February
1995.

