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Abstract: The process of control system synthesis requires evaluation of a number of aternative control
structures with respect to the resulting performance of the closed-loop system. At present, there is not a genera
method for selection of best alternative for control system.

In this paper, a general problem of control system synthesis is formulated and represented as a multiple
criteria decision making problem. Then, an approach is proposed to solve this problem through comparison
between alternative control structures and selection of the best one. The developed approach includes three
steps. First, the set of al possible aternatives for control structures is defined. Second, for each alternative
control system the optimal values of controller parameters are determined. This optimization problem can be
solved by applying standard optimization techniques. Third, the best alternative control structure is selected
from the set of available alternatives. In order to do it, three types of fuzzy preference relations are introduced
that show how “good” the aternative A; is compared to the aternative A; with respect to optimization of the
multiple criteria, w.r.t. satisfaction of the inequality constraints and w.r.t. satisfaction of the equality
congtraints. Also, the total fuzzy preference relation is defined. Then, the fuzzy subset of nondominated
aternatives is determined and the best alternative is selected as the one whose value of the membership
function is maximal. Finally, an approach is described for selection of the weight coefficients needed for the
solution of controller synthesis problem.
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1. Introduction.

The process of control system synthesis requires
evaluation of a number of alternative control
structures with respect to the resulting performance
of the closed-loop system. At present, there are only
few methods which dea with the problem of
controller structure selection. Thus, in [1] a
frequency domain method has been proposed for
controller design for linear plants. According to this
method, the optimal control configuration is the
simplest one (with the lowest possible order) which
gives a sdatisfactory approximation of the desired
closed-loop system. It should be noted, however, that
this method can be applied for linear plants only and
it is not shown how the tradeoff between controller
complexity and controller performance is made.
Also, sometimes it is more appropriate to choose
control  structure that optimizes closed-loop
performance (for example, one that minimizes the
integral squared error) rather than to select controller
which approximates a preliminary specified closed-
loop response. At present, there is not a genera

method for selection of best alternative for control
system.

In this paper, a general problem of control
system synthesis is formulated and represented as a
multiple criteria decision making problem. Then, an
approach is proposed to solve this problem through
comparison between alternative control structures
and selection of the best one.

2. Problem formulation.
The control system under consideration is shown in
Fig.1, where y is an ny-dimensiona vector of the

variables to be controlled, Yo is the set point vector,
u is an nu-dimensional vector of control variables

and n isan nn - dimensional vector of disturbances.

It is supposed that plant dynamics is described by the
following general equations:

—=f(x,u) D

y=g(x,u), )



where x is an nx-dimensional vector of state
variables, i and g are vector functions.
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Fig.1. Control system.
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The problem to be solved isto find control law:
u=u(y) ©)
that will maximize the multiple optimality criteria

represented in the following genera form:
ty

Ik(g)=Gk[z(tf)]+g‘)fOK(z,y,g) xdt ® max @
k=12,..,m
subject to constraints of inequality type:
Y (X0, y(t),u(t) £0 , t1 [0;t,] o)
k=212..,1
and constraints of equality type:
i (), y(0),u(t) =0, tT [0;t;] ®

k=12,..,1,
Constraints (5) and (6) can include both path
congtraints that have to be satisfied in the time
interval t1 [0;t;] and fina time constraints that

have to be kept at the end time t;. In the further

considerations it is more convenient to have only
fina time congraints in the control problem
formulation. For this purpose, the approach proposed
in [2] can be applied to represent path constraints as
end time constraints. According to [2], path
constraints of the form:

akmin £ ak (Z(t)!g(t)) £ akmax (7)
k=12...,1
can be converted to final time constraints through
definition of anew state variable as:

% = (Q'min - Q‘)T >Vvl >(Q'min - §)+
(@-' Qnax )T >VVZ ><§'_ g’max) (8)
an+1(o) = O 1

a=[a (x(t),u(t) ... a(x(),u®)]",
g’min :[aimin aimin]T7 g’max :[aimax almax]T . In
8), W, and W, ae || diagona weighting
matrices whose elements reflect the satisfaction of

where

the path constraints. Then, anew final time constraint
is added:

an+1(tf ) = O (9)
It is clear that when constraint (9) is satisfied, then
constraints (7) are satisfied too.

In the control problem formulated above,
path constraints of types (5) and (6) are now
represented as final time constraints through
definition of the new state variable:

anx+
- =y T (X, Y, U)W,y (X, Y, U) +
i Ty U)W, (x,yU) (10)
an+1(o) = O 1
where;

y (Y0 =, y0) Ly (Y]l (1)

j Gy W)= (6 y) o (YWt (12)
and the elements of the weighting matrices W, and
W, are:

Wy =0,ify (X, Y, U)£0; k=12,...,I; (13

Wy =1, ify (X, y,u) >0; k=12..1; (14)

Wy =0, if - dy £] (X, y,u) £d
k=12,..,1,

Woe =10 (x(1), y(1), u(t)) <-d

Uj (x(1), y(t),u(t)) >d  (16)
k=12,..,1,
Here, the equality constraints (6) are relaxed by
introducing the small positive value d, . Now, new
final time constraint is added:
an+1(tf ) = O (17)
When constraint (17) is sdatisfied, the state and
control trgjectories are feasible with respect to the
inequality and the equality path congtraints (5) and
(6). Thus, the problem of controller synthesis is to
find control law u=u(y) that will maximize the
multiple optimality criteria (4) subject to the
following final time constraints:
- congtraints of inequality type:
Y (X (t), Y(t), Ut ) £0, k=12,..,1; (18)
- congtraints of equality type:
J e ), Yt u(t) =0, k=12,..,1;, (19)

where X' =[X; X, ... X, X0q]" IS the augmented
State vector.

The problem of control system synthesis
consists of choosing an optimal structure and optimal
parameters of the controller, i.e. it consists of
structural and parametric synthesis. Here, the set of

(15)
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the possible alternatives for controller structures is
denoted by:

A={ALA, .. A} (20)
Then, controller parameters for alternative A, are
denoted by vector p(A;) and their optimal values are

denoted by vector _popt(Ai). Thus, control law can

be expressed as:

u=u(y,A, p(A)) (21)
In this way, the problem of controller synthesis for a
given plant is to find the best alternative A, for
controller structure and the optima controller
parameters _popt(Abw) for this structure so that the

criteria (4) are optimized and constraints (18) and
(19) are satisfied.

3. Approach for control

synthesis.
Here, an approach is presented to solve the controller
synthesis problem formulated above. It includes the
following steps:

1. Define the set of all possible alter natives of
controller structure:

A={AL A, . A} (22)

An example set of possible aternatives is shown in
Fig.2.

system

Alternatives
for controller structures
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Fig.2. Alternatives for controller structures.

2. Determine the optimal controller

parameters _popt(Ai) for alternative A, .
These are parameters which maximize the multiple
optimality criteria (4) and satisfy constraints (18) and
(19) given that controller structure is A, . Here, this
multiple criteria optimization problem is solved by
applying fuzzy sets theory. Three types of
membership functions are introduced:

- membership function m (p) that shows
how “good” are the values p(A;) of controller

parameters with respect to optimization of the
multiple criteria | (u), k=12,....,m;

- membership function n}*( p) that shows
how “good” are the parameters p with regard to
satisfying inequality constraints (18);

- membership function n}*( p) that shows
how “good” are the parameters p with respect to

satisfying equality constraints (19).
The following steps should be carried out to
find the optimal values Py of controller parameters:

2.1. For the current values P calculate the
membership function m (p).

In order to do this, m individual membership
functions m (p) correcponding to the m criteria to

be maximized, are considered:
lemax = 1 (P)

I m (23)

m, (p) =1-

k max kmin

where:
Ikmin =min Ik(_p) ' Ikmax = max Ik(B) (24)
pl Ry pl Ry

Function (23) shows to which extent the value of the
criteria is close to its “best” (maximal) vaue and it
belongs to the interval [0;1]. In (24) P, denotes the
admissible range for searching the optimal values of

_p .

Having determined the m individua
membership functions m (p), then the function

m (p) iscomputed as follows:

m@=al, m@. @
k=1

where || is the weight of the k-th criterion. These
weight coefficients are chosen in a such a way so
they will satisfy:

I, =1, 1, >0

k

(26)

N Qos

=

1
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In section 3, an approach for selection of the
weight coefficientsis described.
2.2. For the current values p calculate the

membership function m. (p) -

Similarly to the previous step, |, individual
membership functions m. (p) correcponding to the

|, constraints of type (18), are considered:

i

10,if y 1(p)>0
m. () =i (27)
I
Y «(P)

.'.— ify, (p)£0
Tdk ykmln “

where:
Y ki =miny «(P) (28)

and d, is a smal positive value that prevents the
denominator in (27) from being equal to zero.
Function (27) shows how far is the value of y | ( 9,
from its maximal alowed value (zero) and it belongs

to the interval [0;1]. Function m -(p) is now
computed:
_ 3
m-(@=al,m @ @)
where |

v is the weight of the k-th constraint.
k

2.3. For the current values P calculate the
membership function n}*( P

Analogously, |, individua membership functions
m-, (p) correcponding to the 15
(19), are considered:

|

constraints of type

Jf j (P <-d Uj (p)>d,
(pP)=

|
I
1 (30)
i
i, Ju)

il

[ k
where d, is asmall positive value which is used to
relax the equality constraints (19). Function (30)
shows how “good” is the value of j , ( p) compared

toits“best” (zero) value and it belongs to the interval
[0;1]. Function m. (p) iscomputed as follows:

Jif -d, £] k(p)£dk

b
m-(p)=al,

k=1
isthe weight of the k-th constraint.

xm. (p) (31)

I L

where | ..
Tk

2.4. For the current values P calculate the
membership function ms(p).

This function shows to what extent p can be

accepted as the optimal solution of the problem, i.e.
how “good” p is with respect to optimization of the
multiple criteria and satisfaction of all constraints of
type (18) and (19). It is computed as follows:

my(p) =1, xm (p)+1,.om. +1,m., (32)
where |, Iy* and Ij* are weight coefficients

reflecting the importance respectively of optimality
criteria,  inequality constraints and  equality
congtraints. They should satisfy:

I|+Iy*+lj*=1 (33)

2.5. Determine the optima values Py by

maximizing my(p) -

The optimal values P, ae found through solution

of the following optimization problem:
P t=argrgigxn’s(9) (34)

op
Problem (34) can be solved by applying standard
optimization techniques. In order to execute this step,
all previous steps (from 2.1 to 2.4) have to be
repeated severa times.

3. Determine the best alternative A, from

the set of alternatives A={A, A,, ... A}.

The problem of best alternative selection represents a
multiple criteria decision making problem under
congtraints. Here, a strategy is proposed to solve this
problem by introducing three types of fuzzy
preference relations:
- preference relation Q, with respect to the m
criteria to be optimized:
Q ={(A.A): A AT A m(A.A) (35
- preferencerelation Q, with respect to the I;
inequality constraints to be satisfied:
Q- ={(A.A): A AT A m.(AA) (3)
- preference relation Q with respect to the I
equality constraints to be satisfied:
Q- ={(A.A): A AT A m.(AA)}, (37)
where m , m. and m. are membership functions.
m (A, A;) shows how

Function “good” is
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dternative A compared to dternative A; with

respect to optimization of the multiple criteria (4),
function n}*(A,.,Aj) reflects how “good” is A in
comparison to A; with regard to satisfaction of the
inequality constraints (18) and n}*(A,.,Aj) shows
how “good” is A compared to A; with respect to
satisfaction of the equality constraints (19).

The following steps are to be carried out in

order to select the best aternative A, of controller

structure:

3.1. Determine the fuzzy preference relation
with respect to the criteria to be optimized.
In order to determine this preference relation, m

individual preference relations Q;  corresponding to

the m criteria (4) to be optimized, are considered:
Q. ={(AA): AiiAjT A m (ALA)}
k=12,....m

where it is proposed for the membership function

m (A, A;) to becomputed asfollows:

10,if 1 (A) < T UL (A) > T,
|

(38)

:::l,ifIk(Ai)>I_kUIk(Aj)<I_k

|

 (-T)
(Ik(Ai)' Ik)+(lk(Aj)' Ik)1 (39)

[

i

|

mk(Ai’Aj) :.I,.

: if 1, (A)>T Ul (A)>T,

:r
|
i
i
i

. (Fe- 1(A)
Fe- 1))+ (- 1))
i 0 LA <T UL (A) < Ty
Here, I, is the average value of the criterion Iy
among all available alternatives, i.e.:
I_kzlxé.lk(Ai) (40)
n g

The membership function m (A, A;)shows how
“good’ the alternative A; is compared to the
dternative A; with respect to the maximization of
criterion 1. The average value I, of the criterion
serves as a basis for comparison.

Having determined the m individual preference
relations Q, , then the membership function of the

total preference relation Q with respect to dl
optimization criteriais computed as follows:

m(A A)=al, xm (A.A), (42)
k=1

where || is the weight of the k-th criterion. These
weight coefficients are chosen in a such a way so
they will satisfy:
al, =1,1,>0 (42)
k=1

3.2. Determine the fuzzy preference relation
with respect to the inequality constraints to be
satisfied.

In order to determine this preference relation, |,
individual preference relations Qy corresponding to

the |, inequality constraints (18) to be satisfied, are
considered:
Q. ={(A.A): A AT A m. (AL A)}
. (43)
k=12,..,1;

where it is proposed for the membership function
m. (A, A;) to be computed as follows:

10,ify , (A)>0Uy ,(A)£0
|
:

:::11 ifyl:(Ai)EOl:yI:(Aj)>o

|

L de-yi(A) \
oy e A -y e A))
ity 1 (A)E0Uy 1 (A) £0

o bie-d)
| (Yk(Ai)'dk)"'(Yk(Aj)'dk)
foifyL(A)2 00y, (A)20
Here, the small positive value d, guarantees that the
denominator in the expression for n}*(Ai,Aj) will

not be equal to zero. The membership function
m. (A, A;) shows how “good” the aternative A; is
compared to the dlternative A; with respect to
satisfaction of the k-th inequality constraint of type
(18). The third and fourth expressions in (44) alow
to compare A; with A; depending on the distance of
y . (A) from the boundary (zero) of the inequality
constraint. Thus, if both alternatives satisfy this
constraint, it is accepted that the better alternative is
the one whose vaue y  (A) is more far from

constraint boundary and respectively, if both
aternatives don't satisfy this constraint, the better
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dternative is the one whose value y , (A) is more
close to the boundary. The membership function of
the total preference relation Qy with respect to al

congtraints (18) is computed as follows:
_ &
"}*(Ai’Ai)_ka:-lly;m;(Ai’Ai)’ (45)
where | vi is the weight of the k-th constraint. These
weight coefficients should satisfy:

8

alyﬁzl, Iy;>0 (46)
k=1

3.3. Determine the fuzzy preference relation
with respect to the equality constraints to be satisfied.

Similarly, |, individua preference relations Q.

correcponding to the |, equality constraints (19) to
be satisfied, are considered:
Q. ={(ALA):A AT A m. (AL A} n
k=12,..,1,
where it is proposed for the membership function
m. (A, A;) to becomputed as follows:
10,if §j ((A)>d, Uj ( (A)<-d,}
I ~ . %
i U-d, £] ((A)£d,
[Lif -d, £] [(A)Ed, U
{i «(A)>d, Uj ((A)<-dy}
i K (A))
2+ A+ (A
if - d £] 1 (A)£d,
i K (A))
i A+ A
if {i ((A)>d, Uj (A)<-d}
Ui «(A)>d, Uj ((A))<-d}
(48)
Here, the small positive value d, is used to relax the
equality constraints (19). The third expression in (48)
guarantees  that n};(Ai,Aj):n};(Aj,Ai):O.S
i ((A)=](A)=0. The
n};(Ai,Aj) shows how “good” the

m. (A ,A)

1-

;
i
:
;
;
_1
=i
;
i
:
;
;
;
i
;
|
;
|

when membership

function

aternative A; is compared to the aternative A; with
respect to satisfaction of the k-th equality constraint
of type (19). The membership function of the tota

preference relation QJ . with respect to all constraints
(19) is computed as follows:

5
"}*(Ai,Aj)=a|,-;x”};(Ai,Aj), (49)
k=1
where | i is the weight of the k-th constraint. These
weight coefficients should satisfy:

|
al,. =1, 1,.>0 (50)
k=1

3.4. Determine the total fuzzy preference
relation and the fuzzy subset of nondominated
alternatives.

Thetotal fuzzy preference relation is defined as:

Qr ={(AA):AA T Am(A,A)} (31
and it shows how “good” the dternative A; is
compared to the dalternative A; with respect to
optimization of the multiple criteria (4), the
satisfaction of the inequality constraints of type (18)
and the satisfaction of the equality constraints of type
(19). The membership function m (A, A;) is
computed as follows:

m (A, A;) =1, >xm (AnAj)"'ly* m*(AUAj)

(52)
+Ij*><n}*(Ai,Aj)

where the weight coefficients |, , Iy* and Ij*

reflect the importance of the optimization criteria
compared to that of the inequality and the equality
constraints. It is evident that:

m(ALA) +m(ALA)=1 (53
Let m¢ (A, A;) be the corresponding strictly fuzzy
preference redtion to m (A, A;) with the
membership function [3]:
nf(AifAj) =max{[m (A, A;)- m(A;,A)]OH(54)

Then the fuzzy subset of nondominated alternatives
is described with a membership function as [4]:

m<(A) =1- max (AL A) (55)

3.5. Select the best alternative A, .
The best dternative is the one that maximizes

4 (A) [4],ie:
Ay =arg max nf(A) (56)

AT A
4. Results from the solution of controller
synthesis problem.
The results of performing steps 1 through 3 is that the
best aternative A, of controller structure is
selected (in step 3) with the corresponding optimal
values of controller parameters Eopt(Abw)

(determined in step 2).

3236



4. Approach for selection of weight

coefficients.

Here, the approach proposed in [5] is accepted to
select the weight coefficients. In [5] this method has
been applied to the problem of determination of
weight coefficients of the uncertain parameters when
solving optimization problems under parameter
uncertainty. Here, it is shown that this method can be
successfully used in the solution of controller
synthesis problem described in this paper. In section
2 several weight coefficients were introduced:

I k=12,..,m
I, k=121

k . (57)
I k=120

I |1|y* ,Ij*

As an example, the approach in [5] will be applied to
determine the weight coefficients || , k=12,...,m
of the optimality criteria (4). The following fuzzy
preference relation is considered:

Q={(I;, 1), L T {I 5l 3, m(1 1)} (58)
where |, k=12,..,m are the optimality criteria
(4) to be optimized. The membership function
m(l;,l,)} can teke only three values and is

determined as follows;

[ENIIS
|

n(lj,lk)zajkz_i_o,if <1y (59)
$05,0f 1« I,

In (59) the symbol “>" means that the optimality
criterion | is more important than criterion 1, , the
symbol “<” means that |, is lessimportant than I,
and the symbol < is used to denote that |; and I,

are equally important. Then the table with the values
a;, of the membership function (59) is constructed.
It is accepted that:

a; =1, j=12,.,m (60)
In Table 1, the coefficients § are computed as:

k=1
Then, the weight coefficients | | are determined as
J
follows:
S.
I T : (62)
a s
k=1
and they satisfy:
al, =1 (63)

j=1
The other weight coefficients in (57) can be
determined in asimilar way.

Table 1. Values of the membership function of the fuzzy preference relation (58).

l«®

i J

I a1 a2 Ak Am S | I

P a1 ax Ao dom S | "

lj a1 a2 ajk m S I

I'm am1 Am2 Ak Amm Sn I
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