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Abstract: The process of control system synthesis requires evaluation of a number of alternative control
structures with respect to the resulting performance of the closed-loop system. At present, there is not a general
method for selection of best alternative for control system.

In this paper, a general problem of control system synthesis is formulated and represented as a multiple
criteria decision making problem. Then, an approach is proposed to solve this problem through comparison
between alternative control structures and selection of the best one. The developed approach includes three
steps. First, the set of all possible alternatives for control structures is defined. Second, for each alternative
control system the optimal values of controller parameters are determined. This optimization problem can be
solved by applying standard optimization techniques. Third, the best alternative control structure is selected
from the set of available alternatives. In order to do it, three types of fuzzy preference relations are introduced
that show how “good” the alternative Ai is compared to the alternative Aj with respect to optimization of the
multiple criteria, w.r.t. satisfaction of the inequality constraints and w.r.t. satisfaction of the equality
constraints. Also, the total fuzzy preference relation is defined. Then, the fuzzy subset of nondominated
alternatives is determined and the best alternative is selected as the one whose value of the membership
function is maximal. Finally, an approach is described for selection of the weight coefficients needed for the
solution of controller synthesis problem.
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1. Introduction.
The process of control system synthesis requires
evaluation of a number of alternative control
structures with respect to the resulting performance
of the closed-loop system. At present, there are only
few methods which deal with the problem of
controller structure selection. Thus, in [1] a
frequency domain method has been proposed for
controller design for linear plants. According to this
method, the optimal control configuration is the
simplest one (with the lowest possible order) which
gives a satisfactory approximation of the desired
closed-loop system. It should be noted, however, that
this method can be applied for linear plants only and
it is not shown how the tradeoff between controller
complexity and controller performance is made.
Also, sometimes it is more appropriate to choose
control structure that optimizes closed-loop
performance (for example, one that minimizes the
integral squared error) rather than to select controller
which approximates a preliminary specified closed-
loop response. At present, there is not a general

method for selection of best alternative for control
system.

 In this paper, a general problem of control
system synthesis is formulated and represented as a
multiple criteria decision making problem. Then, an
approach is proposed to solve this problem through
comparison between alternative control structures
and selection of the best one.

2. Problem formulation.
The control system under consideration is shown in
Fig.1, where y  is an ny-dimensional vector of the

variables to be controlled, 
sp

y  is the set point vector,

u  is an nu-dimensional vector of control variables

and νν  is an nν - dimensional vector of disturbances.
It is supposed that plant dynamics is described by the
following general equations:

),( uxf
dt
xd

= (1)

),( uxgy = , (2)
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where x  is an nx-dimensional vector of state

variables, f  and g  are vector functions.
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Fig.1. Control system.

The problem to be solved is to find control law:
)( yuu = (3)

that will maximize the multiple optimality criteria
represented in the following general form:

mk

dtuyxftxGuI
ft

kfkk

,...,2,1

max),,()]([)(
0

0

=

→⋅+= ∫ (4)

subject to constraints of inequality type:

1,...,2,1

];0[,0))(),(),((

lk

tttutytx fk

=

∈≤ψψ
(5)

and constraints of equality type:

2,...,2,1

];0[,0))(),(),((

lk

tttutytx fk

=

∈=ϕϕ
(6)

Constraints (5) and (6) can include both path
constraints that have to be satisfied in the time
interval ];0[ ftt ∈  and final time constraints that

have to be kept at the end time ft . In the further

considerations it is more convenient to have only
final time constraints in the control problem
formulation. For this purpose, the approach proposed
in [2] can be applied to represent path constraints as
end time constraints. According to [2], path
constraints of the form:

lk

atutxaa kkk

,...,2,1

))(),(( maxmin

=
≤≤

(7)

can be converted to final time constraints through
definition of a new state variable as:

( ) ( )

( ) ( )
,0)0(1

max2max

min1min
1

=
−⋅⋅−

+−⋅⋅−=

+

+
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T
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x

aaWaa

aaWaa
dt
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     (8)

where [ ]Tl tutxatutxaa ))(),((...))(),((1= ,

[ ]Tlaaa minmin1min ...= , [ ]Tlaaa maxmax1max ...= . In

(8), 1W  and 2W  are ll ×  diagonal weighting
matrices whose elements reflect the satisfaction of

the path constraints. Then, a new final time constraint
is added:

0)(1 =+ fnx tx (9)

It is clear that when constraint (9) is satisfied, then
constraints (7) are satisfied too.

In the control problem formulated above,
path constraints of types (5) and (6) are now
represented as final time constraints through
definition of the new state variable:

,0)0(

),,(),,(

),,(),,(

1

2

1
1

=

⋅⋅

+⋅⋅=

+

+

nx

T
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dt
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ϕϕϕϕ

ψψψψ

     (10)

where:
T

l uyxuyxuyx )],,(...),,([),,(
11 ψψψψψψ =     (11)

T
l uyxuyxuyx )],,(...),,([),,(
21 ϕϕϕϕϕϕ =     (12)

and the elements of the weighting matrices 1W  and

2W  are:

11 ,...,2,1;0),,(,0 lkuyxifw kkk =≤= ψψ     (13)

11 ,...,2,1;0),,(,1 lkuyxifw kkk =>= ψψ     (14)
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2
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uyxifw kkkkk
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≤≤−= δδϕϕδδ
(15)
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>∨

−<=

δδϕϕ

δδϕϕ

    (16)

Here, the equality constraints (6) are relaxed by
introducing the small positive value kδδ . Now, new
final time constraint is added:

0)(1 =+ fnx tx (17)

When constraint (17) is satisfied, the state and
control trajectories are feasible with respect to the
inequality and the equality path constraints (5) and
(6). Thus, the problem of controller synthesis is to
find control law )( yuu =  that will maximize the

multiple optimality criteria (4) subject to the
following final time constraints:

- constraints of inequality type:
*
1

** ,...,2,1,0))(),(),(( lktutytx fffk =≤ψψ     (18)

- constraints of equality type:
*
2

** ,...,2,1,0))(),(),(( lktutytx fffk ==ϕϕ ,    (19)

where T
nxnx xxxxx ]...[ 121

*
+=  is the augmented

state vector.
The problem of control system synthesis

consists of choosing an optimal structure and optimal
parameters of the controller, i.e. it consists of
structural and parametric synthesis. Here, the set of
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the possible alternatives for controller structures is
denoted by:

}...,,{ 21 nAAAA = (20)

Then, controller parameters for alternative iA  are

denoted by vector )( iAp  and their optimal values are

denoted by vector )( iopt
Ap . Thus, control law can

be expressed as:
))(,,( ii ApAyuu = (21)

In this way, the problem of controller synthesis for a
given plant is to find the best alternative bestA  for
controller structure and the optimal controller
parameters )( bestopt

Ap  for this structure so that the

criteria (4) are optimized and constraints (18) and
(19) are satisfied.

3. Approach for control system
synthesis.
Here, an approach is presented to solve the controller
synthesis problem formulated above. It includes the
following steps:

1. Define the set of all possible alternatives of
controller structure:

}...,,{ 21 nAAAA = (22)
An example set of possible alternatives is shown in
Fig.2.

Alternatives
for controller structures

PID
controller

Internal model
controller

Fuzzy
controller

Neural network
controller

Model predictive
controller

Fig.2. Alternatives for controller structures.

2. Determine the optimal controller
parameters )( iopt

Ap  for alternative iA .

These are parameters which maximize the multiple
optimality criteria (4) and satisfy constraints (18) and
(19) given that controller structure is iA . Here, this
multiple criteria optimization problem is solved by
applying fuzzy sets theory. Three types of
membership functions are introduced:

- membership function )( pIµµ  that shows

how “good” are the values )( iAp  of controller

parameters with respect to optimization of the
multiple criteria mkuIk ,...,2,1,)( = ;

- membership function )(* p
ψψ

µµ  that shows

how “good” are the parameters p  with regard to

satisfying inequality constraints (18);
- membership function )(* p

ϕϕ
µµ  that shows

how “good” are the parameters p  with respect to

satisfying equality constraints (19).
The following steps should be carried out to

find the optimal values 
opt

p  of controller parameters:

2.1. For the current values p  calculate the

membership function )( pIµµ .

In order to do this, m individual membership
functions )( p

kIµµ  correcponding to the m criteria to

be maximized, are considered:

minmax

max )(
1)(

kk

kk
I II

pII
p

k −
−

−=µµ  , (23)

where:
)(max,)(min

00
maxmin pIIpII k

Pp
kk

Pp
k

∈∈
==     (24)

Function (23) shows to which extent the value of the
criteria is close to its “best” (maximal) value and it
belongs to the interval [0;1]. In (24) 0P  denotes the
admissible range for searching the optimal values of
p .

Having determined the m individual
membership functions )( p

kIµµ , then the function

)( pIµµ  is computed as follows:

)()(
1

pp
m

k
III kk∑

=

⋅= µµλλµµ  , (25)

where 
kIλλ  is the weight of the k-th criterion. These

weight coefficients are chosen in a such a way so
they will satisfy:

0,1
1

>=∑
=

kk I

m

k
I λλλλ (26)
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In section 3, an approach for selection of the
weight coefficients is described.

2.2. For the current values p  calculate the

membership function )(* p
ψψ

µµ .

Similarly to the previous step, *
1l  individual

membership functions )(* p
kψψ

µµ  correcponding to the

*
1l  constraints of type (18), are considered:
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µµ
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    (27)

where:

)(min **
min

0

pk
Pp

k ψψψψ
∈

= (28)

and kδδ  is a small positive value that prevents the
denominator in (27) from being equal to zero.

Function (27) shows how far is the value of )(* pkψψ

from its maximal allowed value (zero) and it belongs
to the interval [0;1]. Function )(* p

ψψ
µµ  is now

computed:

)()(
*
1

***

1

pp
l

k
kk

∑
=

⋅=
ψψψψψψ

µµλλµµ (29)

where *
kψψ

λλ  is the weight of the k-th constraint.

2.3. For the current values p  calculate the

membership function )(* p
ϕϕ

µµ .

Analogously, *
2l  individual membership functions

)(* p
kϕϕ

µµ  correcponding to the *
2l  constraints of type

(19), are considered:
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µµ
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)(,
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1

)()(,0

)(

*

*

**

*   (30)

where kδδ  is a small positive value which is used to
relax the equality constraints (19). Function (30)

shows how “good” is the value of )(* pkϕϕ  compared

to its “best” (zero) value and it belongs to the interval
[0;1]. Function )(* p

ϕϕ
µµ  is computed as follows:

)()(
*
2

***

1

pp
l

k
kk

∑
=

⋅=
ϕϕϕϕϕϕ

µµλλµµ (31)

where *
kϕϕ

λλ  is the weight of the k-th constraint.

2.4. For the current values p  calculate the

membership function )( pSµµ .

This function shows to what extent p  can be

accepted as the optimal solution of the problem, i.e.
how “good” p  is with respect to optimization of the

multiple criteria and satisfaction of all constraints of
type (18) and (19). It is computed as follows:

****)()(
ϕϕϕϕψψψψ

µµλλµµλλµµλλµµ ⋅+⋅+⋅= pp IIS  ,    (32)

where Iλλ , *ψψ
λλ  and *ϕϕ

λλ  are weight coefficients

reflecting the importance respectively of optimality
criteria, inequality constraints and equality
constraints. They should satisfy:

1** =++
ϕϕψψ

λλλλλλI (33)

2.5. Determine the optimal values 
opt

p  by

maximizing )( pSµµ .

The optimal values 
opt

p  are found through solution

of the following optimization problem:
)(maxarg

0

pp S
Ppopt

µµ
∈

= (34)

Problem (34) can be solved by applying standard
optimization techniques. In order to execute this step,
all previous steps (from 2.1 to 2.4) have to be
repeated several times.

3. Determine the best alternative bestA  from

the set of alternatives }...,,{ 21 nAAAA = .
The problem of best alternative selection represents a
multiple criteria decision making problem under
constraints. Here, a strategy is proposed to solve this
problem by introducing three types of fuzzy
preference relations:

- preference relation QI with respect to the m
criteria to be optimized:

)},(,,:),{( jiIjijiI AAAAAAAQ µµ∈=     (35)

- preference relation *
ψψQ  with respect to the *

1l

inequality constraints to be satisfied:
)},(,,:),{( ** jijiji AAAAAAAQ

ψψψψ
µµ∈=     (36)

- preference relation *
ϕϕQ  with respect to the *

2l

equality constraints to be satisfied:
)},(,,:),{( ** jijiji AAAAAAAQ

ϕϕϕϕ
µµ∈= ,    (37)

where Iµµ , *ψψ
µµ  and *ϕϕ

µµ  are membership functions.

Function ),( jiI AAµµ  shows how “good” is
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alternative iA  compared to alternative jA  with

respect to optimization of the multiple criteria (4),
function ),(* ji AA

ψψ
µµ  reflects how “good” is iA  in

comparison to jA  with regard to satisfaction of the

inequality constraints (18) and ),(* ji AA
ϕϕ

µµ  shows

how “good” is iA  compared to jA  with respect to

satisfaction of the equality constraints (19).
The following steps are to be carried out in

order to select the best alternative bestA  of controller
structure:

3.1. Determine the fuzzy preference relation
with respect to the criteria to be optimized.
In order to determine this preference relation, m
individual preference relations 

kIQ  corresponding to

the m criteria (4) to be optimized, are considered:

mk

AAAAAAAQ jiIjijiI kk

,...,2,1

)},(,,:),{(

=

∈= µµ
    (38)

where it is proposed for the membership function
),( jiI AA

k
µµ  to be computed as follows:

( )
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Here, kI  is the average value of the criterion Ik

among all available alternatives, i.e.:

∑
=

⋅=
n

i
ikk AI

n
I

1

)(
1

(40)

The membership function ),( jiI AA
k

µµ shows how

“good” the alternative Ai is compared to the
alternative Aj with respect to the maximization of
criterion Ik. The average value kI  of the criterion
serves as a basis for comparison.

Having determined the m individual preference
relations 

kIQ , then the membership function of the

total preference relation QI with respect to all
optimization criteria is computed as follows:

),(),(
1

ji

m

k
IIjiI AAAA

kk∑
=

⋅= µµλλµµ , (41)

where 
kIλλ  is the weight of the k-th criterion. These

weight coefficients are chosen in a such a way so
they will satisfy:

0,1
1

>=∑
=

kk I

m

k
I λλλλ (42)

3.2. Determine the fuzzy preference relation
with respect to the inequality constraints to be
satisfied.

In order to determine this preference relation, *
1l

individual preference relations *
k

Q
ψψ

 corresponding to

the *
1l  inequality constraints (18) to be satisfied, are

considered:

*
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ψψψψ

µµ
    (43)

where it is proposed for the membership function
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µµ  to be computed as follows:
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(44)

Here, the small positive value kδδ  guarantees that the

denominator in the expression for ),(* ji AA
kψψ

µµ  will

not be equal to zero. The membership function
),(* ji AA

kψψ
µµ shows how “good” the alternative Ai is

compared to the alternative Aj with respect to
satisfaction of the k-th inequality constraint of type
(18). The third and fourth expressions in (44) allow
to compare Ai with Aj depending on the distance of

)(* Akψψ  from the boundary (zero) of the inequality
constraint. Thus, if both alternatives satisfy this
constraint, it is accepted that the better alternative is

the one whose value )(* Akψψ  is more far from
constraint boundary and respectively, if both
alternatives don’t satisfy this constraint, the better
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alternative is the one whose value )(* Akψψ  is more
close to the boundary. The membership function of

the total preference relation *
ψψQ  with respect to all

constraints (18) is computed as follows:

),(),(
*
1

***

1
ji

l

k
ji AAAA

kk
∑

=

⋅=
ψψψψψψ

µµλλµµ , (45)

where *
kψψ

λλ  is the weight of the k-th constraint. These

weight coefficients should satisfy:

0,1 *

*
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*
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=
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l

k
ψψψψ

λλλλ (46)

3.3. Determine the fuzzy preference relation
with respect to the equality constraints to be satisfied.

Similarly, *
2l  individual preference relations *

k
Q

ϕϕ

correcponding to the *
2l  equality constraints (19) to

be satisfied, are considered:
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where it is proposed for the membership function
),(* ji AA

kϕϕ
µµ  to be computed as follows:





























−<∨>∧

−<∨>

+
−

≤≤−∧

≤≤−

++
−

−<∨>

∧≤≤−

≤≤−∧

−<∨>

=

})()({

})()({

,
)()(

)(
1

)(

)(

,
)()(2

)(
1

})()({

)(,1

)(

})()({,0

),(

**

**

**

*

*

*

**

*

**

*

*

**

*

kjkkjk

kikkik

jkik

ik

kjkk

kikk

jkik

ik

kjkkjk

kikk

kjkk

kikkik

ji

AA

AAif

AA

A

A

Aif

AA

A

AA

Aif

A

AAif

AA
k

δδϕϕδδϕϕ

δδϕϕδδϕϕ

ϕϕϕϕ

ϕϕ

δδϕϕδδ

δδϕϕδδ

ϕϕϕϕ

ϕϕ

δδϕϕδδϕϕ

δδϕϕδδ

δδϕϕδδ

δδϕϕδδϕϕ

µµ
ϕϕ

(48)
Here, the small positive value kδδ  is used to relax the
equality constraints (19). The third expression in (48)
guarantees that 5.0),(),( ** == ijji AAAA

kk ϕϕϕϕ
µµµµ

when 0)()( ** == jkik AA ϕϕϕϕ . The membership

function ),(* ji AA
kϕϕ

µµ shows how “good” the

alternative Ai is compared to the alternative Aj with
respect to satisfaction of the k-th equality constraint
of type (19). The membership function of the total

preference relation *ϕϕ
Q  with respect to all constraints

(19) is computed as follows:

),(),(
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1
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k
ji AAAA

kk
∑

=

⋅=
ϕϕϕϕϕϕ

µµλλµµ , (49)

where *
kϕϕ

λλ  is the weight of the k-th constraint. These

weight coefficients should satisfy:

0,1 *

*
2

*
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>=∑
=

kk

l

k
ϕϕϕϕ

λλλλ (50)

3.4. Determine the total fuzzy preference
relation and the fuzzy subset of nondominated
alternatives.
The total fuzzy preference relation is defined as:

)},(,,:),{( jiTjijiT AAAAAAAQ µµ∈=     (51)

and it shows how “good” the alternative Ai is
compared to the alternative Aj with respect to
optimization of the multiple criteria (4), the
satisfaction of the inequality constraints of type (18)
and the satisfaction of the equality constraints of type
(19). The membership function ),( jiT AAµµ  is

computed as follows:

),(

),(),(),(
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**

ji

jijiIIjiT

AA

AAAAAA

ϕϕϕϕ

ψψψψ

µµλλ

µµλλµµλλµµ

⋅+

⋅+⋅=
,(52)

where the weight coefficients Iλλ , *ψψ
λλ  and *ϕϕ

λλ

reflect the importance of the optimization criteria
compared to that of the inequality and the equality
constraints. It is evident that:

1),(),( =+ ijTjiT AAAA µµµµ (53)

Let ),( ji
s
T AAµµ  be the corresponding strictly fuzzy

preference realtion to ),( jiT AAµµ  with the

membership function [3]:

}0,)],(),(max{[),( ijTjiTji
s
T AAAAAA µµµµµµ −= (54)

Then the fuzzy subset of nondominated alternatives
is described with a membership function as [4]:

),(max1)(..
ij

s
T

AA
i

dn
T AAA

j

µµµµ
∈

−= (55)

3.5. Select the best alternative bestA .
The best alternative is the one that maximizes

)(..
i

dn
T Aµµ  [4], i.e.:

)(maxarg ..
i

dn
T

AA
best AA

i

µµ
∈

= (56)

4. Results from the solution of controller
synthesis problem.
The results of performing steps 1 through 3 is that the
best alternative bestA  of controller structure is
selected (in step 3) with the corresponding optimal
values of controller parameters )( bestopt

Ap

(determined in step 2).
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4. Approach for selection of weight
coefficients.
Here, the approach proposed in [5] is accepted to
select the weight coefficients. In [5] this method has
been applied to the problem of determination of
weight coefficients of the uncertain parameters when
solving optimization problems under parameter
uncertainty. Here, it is shown that this method can be
successfully used in the solution of controller
synthesis problem described in this paper. In section
2 several weight coefficients were introduced:
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,...,2,1,

,...,2,1,

,...,2,1,
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=
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(57)

As an example, the approach in [5] will be applied to
determine the weight coefficients mk

kI ,...,2,1, =λλ

of the optimality criteria (4). The following fuzzy
preference relation is considered:

)},(,}...,,{,:),{( 21 kjmkjkj IIIIIIIIIQ µµ∈= ,(58)

where mkIk ,...,2,1, =  are the optimality criteria
(4) to be optimized. The membership function

)},( kj IIµµ  can take only three values and is

determined as follows:
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f
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In (59) the symbol “f” means that the optimality
criterion jI  is more important than criterion kI , the

symbol “p” means that jI  is less important than kI

and the symbol Ö is used to denote that jI  and kI

are equally important. Then the table with the values

jka  of the membership function (59) is constructed.

It is accepted that:
mja jj ,...,2,1,1 == (60)

In Table 1, the coefficients Sj are computed as:

1
1

−= ∑
=

m

k
jkj aS (61)

Then, the weight coefficients 
jIλλ  are determined as

follows:

∑
=

=
m

k
k

j
I

S

S
j

1

λλ (62)

and they satisfy:

1
1

=∑
=

m

j
I j

λλ (63)

The other weight coefficients in (57) can be
determined in a similar way.

Table 1. Values of the membership function of the fuzzy preference relation (58).
Ik →→

Ij ↓↓
I1 I2 … Ik … Im Si

jIλλ

I1 a11 a12 … a1k … a1m S1
1Iλλ

I2 a21 a22 … a2k … a2m S2
2Iλλ

...
...

... …
... …

...
...

...

Ij aj1 aj2 … ajk … ajm Sj
jIλλ

...
...

... …
... …

...
...

...

Im am1 am2 … amk … amm Sm
mIλλ
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