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Abstract: We study the chaotic dynamics of a second-order nonlinear and non-autonomous electric
circuit. The circuit has only one nonlinear element, a nonlinear resistor with a piecewise-linear v-i
characteristic of N-type. We also study chaos synchronization of two identical circuits by one-way
coupling.
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1. Introduction
The study of nonlinear electric circuits is a

convenient yet powerful experimental and
analytical tool in studying chaotic behavior in
nonlinear dynamics. The study of a series of simple
nonlinear and non-autonomous second-order
electric circuits revealed all the routes to chaos [1-
9].

Recently, J. G. Lacy [10] presented a simple
nonautonomous second-order electric circuit
(Fig.1), with a nonlinear resistor, whose v-i
characteristic is piecewise linear of N-type
(Fig.2).J. G. Lacy studied the chaotic behavior of
the circuit for a single value of the frequency f

Fig.1  The electrical circuit under consideration.

 (f = 5.0kHz) of the sinusoidal voltage source,

using its amplitude Vs as the bifurcation parameter.
In the present paper, we have studied, by

experiment and computer simulation, the dynamics
of Lacy’s circuit over a wide range of frequencies,

using a nonlinear resistor, whose picewise linear v-i

characteristic has different break points, ±Bp. We
have also studied the chaos synchronization of two
identical circuits by one-way coupling.

Fig.2  i-v characteristic of the nonlinear resistor NR

of our circuit

2. Experimental Apparatus and
Differential Equations

The parameter values of the circuit of Fig.1 are

L = 32.9mH, R = 700Ù, C = 62.9nF, Bp = 1.787V,

Ga = -2.2mS, Gb = 1.0mS, while Vs and fs are the
control parameters. The realization of the nonlinear
resistor is shown in Fig.3, where R1 = R3 = 1.0kÙ
and R2 = 2.2kÙ. The two back-to-back zener diodes

(Ez = 6V) set the break points ±Bp.
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Fig.3  Laboratory realization of the nonlinear
resistor

The differential equations of the circuit of Fig.1
are the following

C(dvC/dt) = iL - g(vC)                             (1)

L(diL/dt) = - RiL - vC + VSsin(2ðft)                       (2)

where

g(vC)= GbvC + 0.5(Ga – Gb){|vC +Bp|-|vC – Bp|}   (3)

is the equation of the v-i characteristic of Fig.2.
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Fig.4 Parametric diagram, f vs. Vs , for our system

3. The Dynamics of the System
We have studied the dynamics of the system for

different fixed values of the frequency f, as the

voltage Vs was increased. The superposition of the
bifurcation diagrams give the parametric diagram, f

vs. Vs of Fig.4. In this diagram, in the upper part,
we can clearly observe the period-doubling route to
chaos. In Figs.5 and 6, the bifurcation  diagrams VC

vs. VS are shown, for f = 4.5kHz and 5.0kHz
respectively.

Fig.5 Bifurcation  diagram, VC vs. VS, for f = 4.5kHz .
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Fig.6 Bifurcation  diagram, VC vs. VS, for fS = 5.0kHz

Cascades of period-doubling bifur-cations have
long been recognized to be one of the common
routes to chaos, as exemplified by the one-
dimensional logistic map xn+1 = ëxn(1-xn). As the
parameter ë in the logistic map is increased, it is
known that periodic orbits are only created but
never destroyed [11]. Unlike the monotone
bifurcation behavior of the logistic map, Dawson et
al. [12] showed, that in many common nonlinear
dynamical systems periodic orbits must be both
created and destroyed infinitely often, as a
parameter is varied. They named this concurrent
creation and annihilation of periodic orbits
antimonotonicity.

Reversals of period-doubling cascades have
been observed in various nonlinear physical
systems both numerically and experimentally. In
one of the first studies of this phenomenon [13], the
occurrence of such reverse sequences was
connected to the dynamics of a cubic 1-D map. As

examples of numerical simulations, we cite the van
der Pol equation [14], Duffing’s oscillator [15],
bad-cavity laser equation [16], the 1-D Chua map
[17], and a RC-ladder chaos generator [18].
Experimental manifestations of antimonotonicity
have been observed on the Belousov-Zhabotinsky
chemical reaction [19], the driven R, L, p-n
junction nonlinear circuit [20-22], a driven third-
order nonlinear electical circuit [23], and an
autonomous third-order nonlinear electrical circuit
with a nonlinear resistor, with an asymmetric v-i
characteristic [24]. In our circuit, for 4600 Hz < fS

< 5050 Hz, we can observe period doubling
reversals, while for the rest of the frequency values
the system ends to a period-1 limit cycle by
boundary crisis [25].

4. Synchronization of Chaos
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It has been shown, that it is possible to
construct a set of chaotic systems, so that their
common signals will have identical or
synchronized behavior [26-28]. Generally, there are
two methods of chaos synchronization available in
the literature. According to the first method due to

Pecora and Carroll [26], a stable subsystem of a
chaotic system could be synchronized with the
separate initial chaotic system under certain
suitable conditions. The second method to achieve
chaos synchronization among two identical
nonlinear systems is due to the effect of one-way
coupling [29-31], without requiring to construct
any stable subsystem.

By one-way coupling we mean, that the
behavior of one (response) system is depended on
the behavior of another identical (drive) system, but
the second one is not influenced by the behavior of
the first. In addition, the response system can have
a different set of initial conditions, other than that
of the drive system. As time progresses, the two
identical chaotic systems can achieve a perfect
synchronization among their state variables and
maintain it, depending upon the one-way coupling

strength.
The schematic circuit realization of the two

identical circuits with one-way coupling is shown
in Fig.7. The two circuits are coupled by a linear
resistor RC and a buffer. The buffer acts as a signal
driving element, which isolates the drive system

variables, being affected by the response system
variables, thereby providing one-way coupling.

             Fig.7  The schematic circuit realization of the two identical circuits of Fig.1 with one-way
coupling.
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Fig.8. The bifurcation diagram (vC2 – vC1) vs. a  for
f= 5.0kHz and VS = 2.28V.

Fig.9. The bifurcation diagram (vC2 – vC1) vs. a  for
f= 5.0kHz and VS = 4.70V.

Fig.10. The bifurcation diagram (vC2 – vC1) vs. a
for  f= 4.5kHz and VS = 1.95V.

Fig.11. The bifurcation diagram (vC2 – vC1) vs. a
for  f= 4.5kHz and VS = 3.50V.

Fig.12. The bifurcation diagram (vC2 – vC1) vs. a
for  f= 4.5kHz and VS = 4.40V.

We have studied the chaos synchronization of
the coupled circuits for different chaotic regimes,
using  a = RC/R as the control parameter. In Figs. 8-
12, we have plotted the bifurcation diagrams  (v'C –

vC) = (vC2 – vC1) vs. a for the different chaotic
regimes of the bifurcation diagrams of Figs.5 & 6
using the same  initial conditions. We observe, that
the onset of synchronization is different in each

diagram, meaning that is depended on the
amplitude and the frequency of the driven signal.
The onset of synchronization is also depended on
the initial conditions.
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5. Conclusion
In this paper we have studied the chaotic

dynamics of a second-order non-linear circuit
driven by a sinusoidally voltage source. We
observed forward and reverse period-doubling
bifurcations, i.e. the phenomenon of antimono-
tonicity.

We have also studied the synchronization of two
identical circuits by one-way coupling in different
chaotic regimes. The onset of synchronization is
depended on the amplitude and frequency of the
driving signal, on the initial conditions, and on the
coupling parameter a.

According to Carroll and Pecora [32], periodi-
cally forced synchronized chaotic circuits are much
more noise-resistant than autonomous synchronized
chaotic circuits, so our circuit could be a good
candidate for secure communications.
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