
Utilising Knowledge Systems to Enable Enhanced Data Distribution in a
Parallelisation Environment

B. MCCOLLUM, P. MILLIGAN AND P. H. CORR
School of Computer Science

The Queen’s University of Belfast
Belfast BT7 1NN

N. Ireland
Tel: +44 1232 274626
Fax: +44 1232 683890

Abstract:-In spite of considerable research it is widely accepted that the goal of fully automating the process
of migrating legacy codes to parallel architectures must remain an unreachable target. Where there have been
successes these have been restricted to discrete domains with clearly defined boundaries, e.g. the PDE system
[1]. The most favourable general approaches are those which use AI techniques, usually expert systems. This
paper introduces a new knowledge model that contains a significantly greater proportion of information than
any other approach to date. It is believed that using this novel approach enhances the production of
parallelised code. The system is illustrated using a code selected from the LINPACK library, TRED2.

Keywords:- Knowledge Models, Data Distribution, Software Re-Engineering, Semi-Automatic
Parallelisation, Legacy Systems IMACS/IEEE CSCC'99 Proceedings, Pages:3301-3307

1 Re-engineering Sequential Codes for
Multiprocessor Platforms

It is perhaps pejorative, but nonetheless accurate, to
characterise the majority of typical users of
multiprocessor systems as unskilled in the arts of
parallelisation. Typically, they will be confirmed in the
use of essentially sequential languages such as
FORTRAN and have neither the time nor the desire to
understand the intricacies of parallel development
techniques or the peculiarities of target architectures in
their endless search for enhanced performance. For
such a user there is a compelling need for the
development of environments which minimise user
involvement with such complications. In short, if novice
users are to realise the potential of multiprocessor
systems then much of the expert knowledge required to
develop parallel code on multiprocessor architectures
must be provided within the development environment.

The ideal solution is a fully automatic approach in
which a user can simply input a sequential program to
the system, be it migrated or newly developed, and
receive as output an efficient parallel equivalent.
Automatic parallelisation scores high on expression, as

programmers are able to use conventional languages,
but is problematic in that it requires inherently complex
issues such as data dependence analysis, parallel
program design, data distribution and load balancing
issues to be addressed. The approach also scores low
on portability as solutions may require considerable
modification when run on different architectures.

Existing parallelisation systems adopt a range of
techniques in an effort to minimise or eliminate the
complexity inherent in the fully automated approach.
Almost invariably the burden of providing the
necessary guidance and expertise lacking in the system
falls back on the user. Indeed, existing systems may be
classified by the extent to which user interaction is
required in the process of code parallelisation. At one
end of the spectrum is the purely language based
approach in which the user is entirely responsible for
determining how parallelism is to be achieved by
annotating the code with appropriate compiler
directives. The other end of the spectrum represents the
goal of a fully automatic parallelisation environment,
independent of application domain and requiring no
user guidance. Between these extremes lie a number of
environments which permit the user to interact with the

system during execution, with varying degrees of
guidance, to choose appropriate program
transformations or data partitioning schemes.

This paper focuses on one of the core problems in
constructing a parallelisation system, that of dealing
with data distribution. For a parallelisation tool to be
effective at parallelising real user applications it must
provide automatic data partitioning algorithms as an
essential part of the environment[1]. Hence, the criteria
against which systems should be judged is the extent to
which they provide domain independent code handling,
and that they require no user interaction for the
generation of effective and efficient data distributions.
In the following section we review a number of existing
systems and evaluate them against these criteria.

2. Related Work
In all areas except the automatic approach,
parallelisation is guided by data parallelism and based
upon a user-provided specification of data distribution.
High level programming languages extensions to
FORTRAN, such as Vienna FORTRAN [2, 3] and
HPF [4]require the user to specify the distribution of
program data as directives within the source code.
Although it may sometimes be relatively
straightforward for a programmer to select an
appropriate set of mappings, in many situations the
process is difficult and requires a tedious analysis of
the code and its data references. While this language
based approach is independent of domain it is entirely
reliant on user interaction and thus fails the criteria as
stated in the previous section.

FORGE90 [1], a windows based environment,
implements data partitioning of a program by inserting
directives into a parallelisation database that it
maintains. The user sets up a decomposition in a
window and applies this to a set of arrays selected in a
second window. The user must also specify which
loops in the code are to be distributed. In a similar
manner CAPTools [5] contains an algorithm for
partitioning and distributing application code data in an
organised manner across a target processor topology.
However, the initial partition must be defined by a user
who must choose the relevant array and associated
array index. It is clear that both environments require
user interaction at early and/or intermediate stages of
the parallelisation process thereby failing the second
criteria.

The final category to be considered encompasses those
tools which deal with domain specific applications, e.g.,
CSCS [6]. Typically such tools provide efficient and
realistic solutions. However, as they deal with only
limited domains it is clear that they fail the criteria as
they are unsuitable for general codes.

It is clear that the elimination of user interaction either
in the form of program annotators or as reactive
selectors to semi-automated tools is the essential goal.
In an effort to remove user interaction more recent
approaches, e.g., Benson [7] and Zima [5], have
focused on the use of expert system models to facilitate
knowledge driven parallelisation. However, this
approach, while demonstrating some success, has not
entirely eliminated the necessity for user interaction. If
expert knowledge of the parallelisation process is to be
made available within a parallelisation environment it is
crucial that the structure of and relationships between
the various sources of that expert knowledge is fully
understood. Without such an understanding effective
exploitation of the available knowledge is inevitably
limited.

The KATT project provides a solution to this problem
by offering users of parallel systems a set of tools
incorporating AI technology to produce efficient
parallel code. Central to this approach is the
development of a novel knowledge model which
provides a consistent framework for the capture,
analysis and utilisation of the full range of relevant
information. To date we have produced a range of
tools, FortPort [8, 9, 10], which parallelise codes using
a number of expert systems to assist with code
transformation, data distribution, code generation and
execution analysis and feedback. However, there are
limitations to the type of information that can be
modelled and applied using expert systems. It is our
contention that the use of neural networks will
complement expert systems in this respect and provide
access to a much broader range of information [11,12].
The following sections of the paper review relevant
knowledge sources, introduce the novel knowledge
model and demonstrate the viability of this approach by
applying our techniques to a real code, TRED2,
previously used by O’Boyle [14].

3. Knowledge Sources

There are a number of knowledge sources which must
be utilised to assist with the parallelisation process.

These sources are; the expertise that exists among
users; the hierarchical nature of that expertise; the
variety of architectural paradigms; the variety of
problem domains; the structure of the program code
itself and performance profiles gathered during code
execution.

There are obvious relationships between the areas
mentioned above, e.g., performance profiles are
intimately related to the particular architecture used
while users may have varying degrees of expertise in
some or all of the other areas. Any abstract model of
the available knowledge must be driven with specific
information and associated inter-source relationships
extracted from the following sources, namely,
architecture specific, code specific, problem specific
and programmer specific.

3.1. Architecture Specific Knowledge:

Knowledge is available about the architecture of the
target machine. This knowledge will include, number of
processors, details of the memory architecture and the
time taken for communication of data between different
processors (latency, bandwidth, and the cost of routing
between non-adjacent processors). Knowledge is also
available on the actual configuration on which the
program will run, e.g., the type of communication
protocol provided.

The architecture currently being used consists a cluster
of five Pentium processors with a UNIX operating
system connected via a 10Mb bandwidth LAN switch
in a star topology. Communication templates have been
developed using C with embedded MPI statements to
provide the necessary inter-processor communication.

3.2. Code Specific Knowledge:

This can be divided into source specific knowledge and
execution specific knowledge:

Source Specific Knowledge: Considerable knowledge
is available from the input sequential program, e.g., the
number and extent of the computationally intensive
parts of the program can be identified, the size of data
sets operated upon can be determined and the spread of
the computational load, loop bounds, access patterns to
arrays, presence and type of data dependencies, etc. can
all be determined from an analysis of the source code.
A selection of this knowledge is currently held as facts
within the expert systems in KATT for the purpose of

program transformation, to eliminate data dependencies
and suggest data distributions. An example of the
knowledge available and how it is utilised is presented
in the case study in section 6.

Execution Specific Knowledge: When a sequential
code or its parallel equivalent is executed on a target
architecture it is possible to gather a profile of the
code’s performance and produce an execution analysis.
Such an analysis, indicating, for example, processor
utilisation, communication timings, etc., represents
knowledge which can have a role in determining
whether or not a chosen parallelisation strategy has
been successful and can be used to inform subsequent
parallelisation recommendations.

3.3. Problem Specific Knowledge:

Work is ongoing in analysing a range of numerical
problems and techniques in order to determine how they
may best be implemented on currently available
architectures. Much of this work involves hand crafting
a solution for optimal performance. Whereas this work
is important, the main objective of the KATT project is
to provide automated tools to assist in the optimisation
process. If expert knowledge related to these areas can
be gathered and stored then it is available to offer
guidance during execution of the system.

If a particular part of a program or calculation can be
recognised then this knowledge can be used to indicate
the most efficient parallel implementation on the
designated architecture. For example, the purpose of
the TRED2 program is to reduce a symmetric matrix to
a symmetric tridiagonal matrix using and accumulating
orthogonal similarity transformations. Once this
program has been parallelised capturing knowledge on
how the transformation was achieved may be brought
to bear on further codes with the same or similar aims
suggesting that they too should be parallelised in a
similar fashion. This knowledge may be gained either
explicitly or gathered implicitly during the knowledge
extraction process.

3.4. Programmer Specific Knowledge:

This can be divided into sequential code knowledge and
parallelisation knowledge:-

Sequential Code Knowledge: It is not unreasonable to
assume that a newly developed code represents a clear

expression of the algorithm used to solve a particular
problem. In particular, an experienced programmer will
have a range of experiential programming knowledge
which will be reflected in the code under investigation.
However, as a consequence of the inevitable
maintenance activity associated with legacy codes the
structure of the code is degraded making it difficult to
extract the knowledge necessary to suggest the original
intention. TRED2 is a very structured code will no
evidence of loops or sub routines having been
restructured. As opposed to many examples of legacy
codes studied, this particular piece of code provides an
ideal starting point for the parallelisation process.

Parallelisation Knowledge: This relates to how to
transform sequential code for execution on a particular
parallel machine. It specifies what parts of the program
are to be parallelised, how processes interact, in what
order they are to be carried out and how to resolve
conflicts if they arise. As before, the programmer will
have a range of experiential programming knowledge
varying from beginner to expert. TRED2 may be
parallelised by firstly applying a series of
transformations to enhance the explicit parallelism
within the program. This parallelised version
subsequently undergoes data partitioning [13]. The
particular techniques used and the order they are
applied are one example of how to go about
parallelising the program and are dependent on who is
working on the code and their experience with
parallelisation.

4. Structure and Relationships between
Knowledge Sources

The available knowledge can be regarded as a plethora
of partially overlapping and partially conflicting
information. To reduce this confusion it is necessary to
organise the information in a logical manner.

At first sight it appears that the information can be
arranged as a spectrum running from the ‘low level’
architecture specific information to the more ‘high
level’ problem specific information. However,
subsequent attempts to determine precise boundaries
between information categories within the spectrum
fail. If the knowledge available is grouped in a slightly
different manner, the inherent overlap between the
categories, which is an essential facet of the real world

and has to be retained, can be recognised and presented
in a logical manner as a ‘knowledge pool’. This
knowledge pool is shown conceptually in Figure 1
together with an indication of the extent to which it is
exploited by existing systems.

The ‘best’ information for parallelisation will occur
where all four knowledge components intersect, the so
called knowledge enriched zone. Hence, the ultimate
goal of the KATT project is to take up a position within
this zone. To date, as shown in the diagram, none of the
existing systems lie within this zone.

Within the current KATT environment the exploitation
of the full range of available knowledge is limited as a
result of using only expert system techniques. Expert
systems do not provide any mechanism for pattern
matching, an essential component of any knowledge
driven data partitioning algorithm [14]. Neural
networks provide this necessary pattern matching
ability.

The ability of neural networks to generalise and extract
patterns from a corpus of data, allied with their
capacity to learn an appropriate mapping between an
input and output, has ensured that they have found
application in many diverse disciplines. Neural
networks have a unique set of characteristics. They
can, learn from experience, generalise from examples,
and abstract essential information from noisy data.
These features also make their use attractive in this
context. Given an input of essential information about a
code and an output of the most appropriate
parallelisation operations to apply to that code, the
learned mapping held by the network effectively
encapsulates knowledge which may be brought to bear
on the process. To use neural techniques successfully,
initially in extracting and then utilising knowledge from
code, requires firstly, a characterisation scheme capable
of representing the information about a code necessary
for a decision on the most appropriate parallelisation
operations to apply and secondly, access to a large
corpus of codes, and preferably the associated
operations, from which to learn. The eventual
performance of the network in suggesting the most
appropriate parallelisation operations is heavily
dependent on the quality and accuracy of the original
training examples and the characterisation scheme
used.

5. Advantage over the Current System

Within this project the strength of the expert system lies
in its ability to scrutinise the code at a higher structural
level and perform certain rule based actions. The
characteristics of the input code cause certain rules
within the expert system to be fired. These rules reflect
the structure of the users’ code at a high level. It is this
ability to scrutinise code at a high level which is the
strength of the expert system.

The main advantage of the neural network is its ability
to generalise from code, recognising and extracting
detail. This information is required to facilitate pattern
matching, a fundamental activity in support of code
distribution strategies. The neural network provides
faster pattern matching and greater detail than the
expert system. Combining these approaches within a
coherent framework improves the ability of KATT to
offer strategic intelligent guidance to the user through
broader and deeper access to the knowledge pool. Such
a system maximises knowledge utilisation and
effectively positions KATT within the knowledge
enriched zone.

6. Illustrative Case Study:- Knowledge
Extraction for Data Partitioning

To illustrate the viability of this approach and
demonstrate the resultant knowledge utilisation a case
study is introduced. The case study is focused on a
typical, real, non trivial problem taken from the
EISPACK library and was used by O’Boyle [14] to
demonstrate a data partitioning algorithm.

Sequential analysis of the code identifies five major
computationally intensive areas as indicated on the
listing. As parallelisation of these areas has the greatest
potential to maximise performance attention will focus,
in the first instance, on these regions. For the purpose
of illustrating the process of knowledge extraction from
code and its subsequent use in determining the most
appropriate data partitioning, the code section
containing computationally intensive areas 1 and 2 will
be examined in detail. In partitioning the data it is
assumed that minimising communication is more
important than load balance; this is based on the
supposition that non-local accesses cost more than
computation [13]. This is simplistic but will suffice for
purposes of illustration.

VCFS

Knowledge Enriched Zone (KEZ)

CSCS KATT -proposed

KATT - current

Programmer Specific
Knowledge

Code Specific
Knowledge

Architecture Specific
Knowledge

Problem Specific
Knowledge

HPF

Figure 1. Overlapping knowledge sources and their exploitation by
parallelisation systems.

Consider the following code fragment containing the
computationally intensive loops labelled 1 and 2
respectively:

Tread_(a)

DO 45 J = 1, L
F = D(J)
Z(J,1) = F
G = E(J) + Z(J, J)* F - - (1)
JP1 = J + 1
IF (L .LT. JP1) GO TO 44
DO 43 K = JP1 , L

G = G + Z(K, J)* D(K)
E(K) = E(K) + Z(K, J) * F - - (2)

43 CONTINUE
44 E(J) = G
45 CONTINUE

The following knowledge relevant to data partitioning
can be extracted from the code by inspection. Within
KATT the information is elicited automatically.

1) Code section identification Tread_(a)
2) Number of loops in code section 2
3) Number of statements before 1st loop 0 5
4) Loop Identification L_1 L_2

a) Number of statements in loop 9 2
b) Type of loop transformation none none
c) Loop variable component row row
d) Computational access pattern colm row

5) Number of dependencies 1 1
a) Data dependence type flow Input
b) Within single statement no no
c) Loop independent yes yes
d) Loop carried forward

(i.e. Direction vector) no no
e) Component dependency in 2nd
f) Dependence Distance - -
g) Which loop carries dependence 2 -

The knowledge represented above is derived directly
from the code and as such represents source specific
knowledge as detailed in section 3.2. In this instance,
source specific knowledge alone is sufficient to
determine an appropriate data partitioning.

1) Code section Tread_(a)

2) Loop Identification L_1 L_2

3) Block partitioning yes yes

Both loops can be partitioned by block with the
insertion of communication statements at the
computational boundaries

4) Row partitioning no yes
Loop_1 increases the J component of the array
Z(J, 1) but access is also required of Z(J, J)
during the same iteration of the loop.

5) Column partitioning yes no
Loop_2 increases the K component of the array
Z(K, J) i.e. the array access pattern is by row.

In the current KATT environment an expert system is
used to synthesise the source specific knowledge and
produce a recommended data partition. This section of
KATT is being revised to include a neural network
component thereby providing more comprehensive
coverage of this knowledge source [9, 12].

Using the knowledge of the dependencies within the
loop structures of Tread_(a) block or column data
partitioning will both minimise communication, thereby
maximising program speed-up during the
parallelisation process, and ensure that the integrity of
the outcome of the identified sections of code is
maintained. Given the suggested partitioning,
architecture specific knowledge (best represented
explicitly within an expert system but currently held
implicitly, hard coded for a particular target, within the
current KATT system) is required before the system
can determine an actual distribution on the target
platform.

Having analysed the code and drawn on the appropriate
knowledge sources to determine a suitable data
distribution KATT is now in a position to execute the
equivalent parallel code on the target platform. While
executing, performance profiling information is
gathered and used to determine if an acceptable
improvement in performance over sequential execution
has been achieved. If performance proves unacceptable
this profiling information is fed back into the
parallelisation environment and used, again with the
assistance of an expert system, to inform a revised data
partition and/or distribution recommendation. Iterative
feedback continues in this way until either an
acceptable performance improvement is achieved or the
system determines that an acceptable improvement is
unattainable.

7. Conclusion

In this paper a novel knowledge model visualised as a
knowledge pool is presented. The model provides a
basis for improving the parallelisation process by
enabling a greater volume of information relevant to the
re-engineering process to be extracted from a legacy
code and utilised. Exploiting this knowledge requires a
combination of expert system and neural network
techniques, each bringing their own strengths to bear
and combining to take full advantage of the knowledge
available. By exploiting the strengths of both expert
system and neural network approaches within a
common framework the overall quality and scope of the
parallelisation process are greatly enhanced. A case
study, based on a real code, is used to illustrate the
techniques used to facilitate data distribution.

References:

1. R.Rehmann, Automatic Generation of Programs
for a Scientific Parallel Programming
Environment, Technical Report CSCS-TR-94-
02, Swiss Scientific Computing Centre, May
1994.

2 P. F. Leggett, A. T. J. Marsh, S. P. Johnston and
M. Cross, Integrating User Knowledge with
Information from Parallelisation Tools to
Facilitate the Automatic Generation of Efficient
Parallel Fortran Code., Parallel Computing, vol.
22, pp259 - 288, 1996.

3. J. Hulman, S. Andel, B. Chapman and H. P.
Zima, Intelligent Parallelization within the
Vienna Fortran Compilation system, Proc. Forth
Workshop on Compilers for Parallel Computers,
1993, pp 455-467

4. B. Chapman, T. Fahringer and H. Zima,
Automatic support for data distribution on
distributed memory multiprocessor systems, in
U. Banerjee et al. Eds. Proceedings of the 6th
Workshop in Language and Compilers for
Parallel Computing. Lecture Notes in Computer
Science, vol 768. New York: Springer-Verlag
pp184-199, 1993

5. High Performance Fortran Forum, High
Performance Fortran Language Specification,
Version 1.0, Rice University, May 1993.

6. S Johnston, et. al., The Design and Evaluation of
“CAPTools” - A Computer Aided Parallelisation
Tool-kit, Paper No. 98/IM/39, CMS Press, 1998

7. K. Decker, J Dvorak and R Rehmann, A
knowledge-based scientific parallel programming
environment, Swiss Scientific Computing Centre,
CSCS-TR-93-07, 1993.

8. T.J.D.Benson, The Mathematician’s Devil, PhD
thesis, QUB 1993

9. P.Milligan, P. P. Sage, P. J. P. McMullan and P.
H. Corr. A Knowledge Based Approach to
Parallel Software Engineering. In, Software
Engineering for Parallel and Distributed
Systems, Chapman and Hall, ISBN 0-412-
75640-0, pp 297 - 302, 1996.

10. P. J. P. McMullan, P. Milligan, P. P. Sage and
P. H. Corr. A Knowledge Based Approach to the
Parallelisation, Generation and Evaluation of
Code for Execution on Parallel Architectures.
IEEE Computer Society Press, ISBN 0-8186-
7703-1, pp 58 - 63, 1997

11. P. J. P. McMullan, P. Milligan and P. H. Corr.
Knowledge Assisted Code Generation and
Analysis. Lecture Notes in Computer Science
1225, Springer Verlag, ISBN 3-540-62898-3, pp
1030-1031, 1997

12. V. Purnell, P. H. Corr and P.Milligan, “Neural
Networks for Code Transformation”, Lecture
Notes in Computer Science, 1225, Springer
Verlag, pp 1028-1029

13. V. Purnell, P. H. Corr and P.Milligan, “ A Novel
Approach to Loop Characterisation”, IEEE
Computer Society Press, pp 272-277, 1997

14. M. O’Boyle, A Data Partitioning Algorithm for
Distributed Memory Compilation, Department of
Computer Science, University of Manchester,
Technical Report UMCS-93-7-1

15. P. J. P. McMullan, The Intelligent Generation
and Analysis of Code for Parallel Platforms,
PhD thesis, QUB 1996.

