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Abstract:  - We demonstrate a time-optimal control algorithm based on the sliding mode control principle. A designed
time-optimal trajectory during the reaching phase is combined with fast sliding dynamics. The discontinuous
algorithm gives time response, closer to the analytical time-optimal control solution based on Pontryagin principle,
and robust performance to plant parameter uncertainties. Conditions for the existing of time-optimal sliding mode
trajectory for second order systems are derived. A fuzzy version is also demonstrated.
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1.  Introduction
The time-optimal control (TOC) is important for robots
and manipulators, where a given trajectory has to be
passed in the shortest possible time with or without
constraints on some state coordinates like velocities,
accelerations, etc. If the robot has invariant dynamics
the time-optimal solution can be obtained analytically.
But in reality the robot continuously changes its
kinematic and dynamic properties and needs at least
adaptive control leading to quite complex algorithms.

Alternatively we can use the simple sliding mode
control (SMC) algorithm already employed successfully
to many robot applications [1, 2, 3]. The sliding mode
keeps good system properties. On other hand it does not
guarantee TOC performance, so one has to compromise
between achieved robustness and longer response time.

In this paper we try to bridge both TOC and SMC
principles and show how SMC can give robust and
quasi-TOC behavior if the theoretical switching line for
a second order robot dynamics is used as sliding line in a
SMC. For better understanding of the main idea we
introduce a very simple example. Let first have as a
system under control a double integrator described by
equation (14). Obviously this is the simplest second
order system with the simplest switching line (15) for
TOC [4] giving the behavior on Fig. 1.

Now suppose the plant has realistic dynamics with two
real poles and the TOC is using the same switching line.
To emphasize on the resulting effect let examine poles at

}02.0ñ,01.0ñ{ 21 −=−= , }2.0ñ,1.0ñ{ 21 −=−=  and

}2ñ,1ñ{ 21 −=−= .Let also amplify the relay output by
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Fig. 1. Time-optimal behavior of double integrator

additional gain 1
21 )ññ( −=adK . The simulated behavior

with the same initial conditions is on Fig. 2. The settling
time of the examples is almost the same, even the time
constants differ 102 times. This seems to be a paradox,
but it is due to the high gain in the system. Extending the
experiment by inserting extremely high gain, let say 106,
the system will perform SMC on the TOC switching line
of the double integrator. In other words we are able to
replicate the TOC double integrator behavior regardless
the dynamics of the real plant. If the poles are shifted
left the settling time becomes smaller as the plant time
constants are decreasing.

From this example we can theoreticaly conclude that a
robust TOC behavior of a second order system, when
the poles vary during system motion, can be achieved by
introducing sufficiently large gain. Hence, if the gain of
the plant under control is smaller we have to compensate
it to achieve TOC and SMC conditions. The problem is
related to the design of a SMC in both standard and
fuzzy versions.

Guidelines for design and implementation of this
approach are given in Section 4. Section 2 gives the
problem formulation, then Section 3 contains a brief
overview of TOC and SMC. Illustrative examples are
shown in Section 5. Final comments conclude the work.
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2.  Problem Formulation
Let have a controllable and reachable second order time-
invariant linear plant
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where )(td  is a bounded disturbance and the bounded

by some known function term ),( tux,f  represents
uncertainties in the model. The control signal is limited
to certain maximum values, for example the normalized

value 1≤u . We suppose also the classical time-

optimal problem
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can be solved for the undisturbed and certain plant
model
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and the solution is unique under respective conditions.

Naturally uncertainties exist, so parameter variations
(poles move) in (3) can make the system behavior quite
different from the optimal, normally designed for
nominal parameters. In addition disturbances can also
deteriorate the system performance far away from the
expected. The problem is to develop an algorithm for
time-optimal  control of  plants (1)  accomodating robust

properties and providing time-optimal performance
closer to the theoreticaly achievable from (2) as for the
pure case (3).

The task can be solved by combining the positive chara-
cteristics of two well known methods that are different
in nature but similar in the way the control action is
applied to the plant. The SMC provides  robustness and
partly satisfactory time behavior but just for the sliding
mode. The motion to the sliding surface does not fulfil
minimum time requirement. On other side the TOC
approach gives the desired solution, but the control
algorithm is not robust. We propose to merge both
approaches into an algorithm utilizing some common
details, namely the switching or sliding surface (line).

3. Short Overview of Time-Optimal
and Sliding Mode Control

3.1. Time-optimal control

According to the Pontryagin principle the Hamiltonian
for the problem (2) and plant (3) is given by

,)()()()(1),,( tttt TT BuâAxâëux ++=Η         (4)

where )(tâ  is Lagrange multiplier obtained by solving
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The minimum of )( âu,x,Η  under the constraints

1≤u  is obtained by a discontinuous optimal control

)](sgn[)( 0tt T
opt âBu −=   .         (6)

In the general case the relation of )( 0tâ  from )( 0tx  is

nonlinear and to obtain the optimal control signal as a
function of time is impossible. To avoid the necessity to
solve the differential equation (5) about )(tâ  a
nonlinear state feedback can be implemented, so

))]((sgn[)( tt optopt xKu −=   ,         (7)

where )(toptx  is the optimal motion. It is necessary:

(i) the plant has to be stable (no positive poles);
(ii) the control variables switch at most 1−n  times,

where n  is the number of the poles;
(iii) if exists, the solution is unique for any fixed )( ftx ;

in order to derive time-optimal control. The theoretical
forms of the nonlinear state feedback (7) of second order
systems are provided in the examples in Section 5.

3.2. Sliding Mode Control

For the real controllable plant (1) a family of switching
hyperplanes

}0)({ == xx
i

sS   ,         (8)

can be defined, where )(xis  is a switching function.

The system motion from any initial state 00 )( xx =t to

the phase space origin consists of two components -
reaching mode and sliding mode. During the reaching
mode the system moves towards the switching surface in
finite time. When certain conditions for existing of
sliding mode are satisfied [1], the system begins to slide
on a switching hyperplane until reaches the origin. The
general condition for sliding is 0<ii ss &  in the

neighborhood of )(xis  [6]. When 0)( =xis  and

0)( =xis&  the system is independent on system

parameter variations and disturbances.

The sliding motion depends highly on (8) and in the
general case takes infinite time. Choosing the values of
the sliding hyperplane parameters one can obtain faster
dynamics and reduce the sliding mode transient time.
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4. Time-Optimal Sliding Mode Control
Let have a look at both parts of the sliding mode control.
Both reaching and sliding modes are executed in
sequence. If we make sure that separately during the
reaching mode and the sliding mode the algorithm
comes up with a minimal transient time, then the total
response time will be also minimal. To show the
consistency of this hypothesis we have to investigate
how to design:

(1) minimum-time control for the sliding mode,
(2) minimum-time control for the reaching mode.

The first question is addressed to the variable structure
control theory and probably is easier, while the second
one is addressed also to the time-optimal control theory
and needs a synchronised view in both theoretical areas.

4.1.  Minimum-time control in sliding mode

As the system dynamics depends only on the dynamic
equation of the sliding hyperplanes (8), proper
parameter selection could give satisfactory behavior. Let
consider n-th order SISO system when equation (8)
takes the form

)(
1

)()(),( 1

1

0

1 tx
k

n
tx

dt

d
ts kn

n

k

n
−−

−

=

− ∑ 






 −
=+= λx         (9)

The positive parameter λ  together with (9) describes
the dynamics in sliding mode. Physically λ  can be
treated as a time constant in a chain of first order blocks,
which is always stable. Hence, for second order system
we get the simplest case of straight sliding line

 0)()(.)()( 1112 =+=+=+ λλλ ssxsxssxsx   .

Increasing λ  the pole goes to infinity and the sliding
system response can be made short enough. However,
increasing λ  the domain of attraction for sliding mode
drastically shrinks [1] that probably introduces unde-
sirable oscillatory response. Therefore some upper limit
of λ  should be taken into account if pure SMC algo-
rithm is designed. Concluding we underline that small
but sufficient domain of attraction for sliding mode
exists and at the same time it provides fast enough
system time response. Alternatively it is possible to set a
high gain and then the closed loop system follows the
behavior, corresponding to the switching (sliding) line.

4.2.  Minimum-time control in reaching mode

If the plant has the properties described at the beginning
of Section 2, the reaching motion can be provided by a
linear state feedback. Obviously the time to enter the
sliding mode domain of attraction depends on the initial
condition and the location of the switching (sliding)

hyperplanes. As mentioned above a small domain can
introduce many switchings (bang-bang control signal)
and the response time will be increased along with some
undesired oscillations.

Then a reasonable questions is: is it possible to employ
the time-optimal control in terms of the classical
Pontryagin minimum principle for the reaching mode?
In this way we should guarantee strict conditions for
minimum-time performance of the reaching mode. The
reply we introduce in intuitive but obvious way. In
parallel we also will try to bypass the most difficult
problem in the Pontryagin’s approach – the design of
switching line that could be of higher complexity. The
main idea here is:

(i) replace the exact theoretical switching line for TOC
with a switching line of a simple second order plant,
for example double integrator;

(ii) make a linearwise approximation of it as simple as
possible or apply fuzzy approximation, if fuzzy
logic controller will be used;

(iii) use the simplified switching line to bring the system
to the sliding mode domain of attraction, then slide
to the origin.

4.3.  Design algorithm

The rationale behind the proposed approach consists of
the following.

We can define a desired time-optimal behavior of a
second order system assuming some kind of normalized
properties. For example this can be a system with unit
gain 1=ΣK , accepting bang-bang input control signal

with unit amplitude 1≤u . Appropriate choice is the

simplest system of that kind - the double integrator (see
Section 5). Its TOC behavior is easily computed and the
properties are transparent from robot control viewpoint.
For the precise system model no overshoot response
guarantees no oscillations during the system motion.

In practice the system model is imperfect. The poles can
have varying locations depending on the robot
kinematics. However, we want to keep the system
properties closer to the described above. To derive the
necessary conditions let consider the plant poles together
with their uncertainties

,ñññ

,ñññ
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∆+=

∆+=
n

n

     (10)

where nn
21 ñ,ñ  are the nominal poles and 11ñ δ≤∆ ,

22ñ δ≤∆  are bounded pole variations. Let define the

gain parameter of the plant PK  as a product of the poles
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KKK n
PP ∆+== 21.ññ   ,      (11)

where n
2

n
1 .ññ=n

PK  and ),( 21 δδhK =∆  will be also

bounded by δ≤∆K . The value PK  generally would

differ to ΣK . It is not difficult to see that it could be

much smaller than ΣK  when the plant time constants
(the reciprocial values to the poles) have significant size.
Therefore to compensate PK  to ΣK  we need additional
gain

1
21 )ññ(

1 −Σ ===
PP

ad KK

K
K .       (12)

We have to ensure a minimum value of  adK  to keep the

property (12). As PK  is in the denominator the

minimum value min
PK  is important. Hence, for the

existing of time-optimal sliding mode trajectory of the
system we can formulate the following condition:

 1
min21

min )ññ( −=≥ Pad KK   .           (13)

Under that condition the system gain ΣK  will be at least
equal to 1 and the closed loop system performance will
be not worse than the time-optimal response of the
double integrator, considered as reference.

If condition (13) is not satisfied the closed loop system
will have longer response time and the requirements for
minimum-time control are not guaranteed. On contrary,
condition (13) is naturally satisfied for plants with small
time constants, giving higher values of PK , hence their
responses have shorter settling time.

The time-optimal control strategy requires larger values
of the control signal. In such way the system trajectory
cannot be disrupted by any bounded and less powerful
disturbance. Once started the sliding mode provides the
robustness to disturbances.

5. Test Examples
We provide a set of illustrative simulations using some
well-known examples:

(a) time-optimal control of double integrator with its
theoretical switching line (15),

(b) time-optimal control of two-pole plant with its
theoretical switching line (17),

(c) time-optimal control of two-pole plant with the
switching line of the double integrator (15),

(d) fuzzy SMC of two-pole plant with the approximated
switching line of the double integrator (15).

The SISO plant models are:

(1) double integrator
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with theoretical TOC switching line

)()(5.0)( 221 txtxtx −=   .       (15)

The behavior is already shown on Fig. 1.

(2) two-pole system
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where 1=K  and poles vary )01.0()1(ñ1 −÷−=  and

)02.0()2(ñ2 −÷−= . The switching line is
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and )(),( 21 tyty  are new system coordinates obtained
by the transformation [4]
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for convenience of designing the switching line.

To identify the properties of the proposed algorithm we
make several pairwise comparisons and answer some
questions:

(a) Does the switching line of the double integrator
give minimum time response for the two real pole
system?

We already pointed out there are slight deviations
between Fig. 2 and the double integrator time-optimal
behavior on Fig. 1. Comparing Fig.3 and Fig. 2 (c) with
the same plant pole locations we observe no difference
in the duration of time responses. The difference is in
the mode of control. The theoretical TOC needs only
one switching and then the chattering keeps the zero
steady state, while the sliding control provides a sliding
mode immediatelly after the first switching. The
chattering in this case in non-uniform because of the
nonlinear nature of the switching line. Hence, the
conclusion is the time-optimal SMC comes up with a
behavior  that is not worse than the real time-optimal
algorithm.

(b) How sensitive is the proposed algorithm to
variations in the plant model parameters (poles)?

Comparing again Fig.3 and all cases on Fig.2 we
observe also slight dissimilarities in the response time
duration even the poles differ 102 times. In all cases the
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(a) }02.0ñ,01.0ñ{ 21 −=−=
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(b) }2.0ñ,1.0ñ{ 21 −=−=
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(c) }2ñ,1ñ{ 21 −=−=

Fig. 2. Two-pole system with TOC switching
line of the double integrator

transient responses keep the non-overshoot nature of the
system output which is a very good property for robot/
manipulator control.

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 0 .5 1 1 .5 2 2 .5
-0 .8

-0 .6

-0 .4

-0 .2

0

0 .2

0 .4

0 .6

0 0 .5 1 1 .5 2 2 .5
-2

-1 .5

-1

-0 .5

0

0 .5

1

1 .5

2

Fig. 3. Two-pole system with its theoretical
TOC switching line

 (c) How a fuzzy controller can achieve a time-optimal
control behavior?

A standard two-input-one-output fuzzy controller which
approximates the theoretical switching line of the two-
pole }2ñ,1ñ{ 21 −=−=  system is used to control it.

Both inputs receive the state coordinates )(,)( 21 txtx
and the output is the control variable sent to the switch.
The behavior is presented on Fig. 4. Obviously, there are
no visual differences with the  respective crisp time-
optimal algorithm, as expected. The fuzzy membership
functions and control surface are presented on Fig. 6 for
illustration. Then the approximated swithing line of the
double integrator is inserted in the same fuzzy
controller. The behavior in the control of the two-pole

}2ñ,1ñ{ 21 −=−=  system is shown on Fig. 6. Again
very small differences with the respective crisp
equivalent on Fig. 2 (c) or the TOC case on Fig. 4.
Hence, the conclusion is that the fuzzy version of the
proposed algorithm achieves the time-optimal control
property to the same level as the crisp original.
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Fig. 4. Two-pole system }2ñ,1ñ{ 21 −=−=  with
its fuzzy approximated TOC switching line

Fig. 5. Membership functions and control surface for
TOC line of the two-pole system }2ñ,1ñ{ 21 −=−=
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Fig. 6. Two-pole system }2ñ,1ñ{ 21 −=−=  with
fuzzy approximated TOC switching line of

the double integrator

Fig. 7. Membership functions and control surface for
TOC line of the double integrator
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6. Conclusions
A simple approach to design a time-optimal sliding
mode control algorithm is presented. It is based on the
conclusions about the time-optimal behavior of a double
integrator and is applicable for second order systems. It
is convenient for implementation and has also good
robust properties. The provided test examples show
these properties for SISO systems like manipulators/
robots. A particular interest is the achieved non-
overshoot time response which is very useful in
positioning for example of moving robot arms.

Open questions is related to plants with time delay or to
the problem arising when higher order system is
approximated with lower order with time delay. Possible
solution could be found applying Smith-predictor or
internal model control techniques to compensate the
delay and then ground the proposed algorithm on the
compensated system model.

Obvious drawbacks of the proposed algorithms are the
large control signal during the reaching mode and the
chattering in the sliding mode. Certain known
precautions not discussed here can be applied slightly
affecting the properties of the algorithm.
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