Monitoring the control loop on the basis of a reduced process model
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Abstract: - The control loop usually exhibits some optimal performance in the nominal operating conditions. If
these conditions change or a fault occurs in the process, the control system’s performance could deteriorate. In
this paper, we consider a model-based approach to detecting degradation of the control loop. For this purpose
we propose a statistical test on residuals produced by a low-order model.

In general, the discrepancy between the process output and model output can be caused by faults and
modelling error. The statistical test on residuals is modified so that it also accounts for the process’
unmodelled dynamics. Namely, if the impact of undermodelling on the model output is disregarded, the
number of false alarms can significantly increase. It is therefore crucial to have a good estimate of both
components of the model error, i.e. the undermodelling and the noise term. In estimating model error, we use
the stochastic embedding approach [3], which handles the structural uncertainty of the nominal model by
describing it with the FIR model. The coefficients of the FIR model are supposed to be normally distributed
with a zero mean and exponentially decaying variance.
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1 Introduction
Due to changes in the plant, equipment failure or
set point change, the control system ceases to work
as intended. For example, increasing valve friction
results in the hysteresis or stick-slip motion of the
valve, resulting in oscillations of the process
signals. Due to nonlinearity, a changed operating
point results in the change of the process gain
and/or time constants. In this case, the model is no
longer a reliable description of the process and the
model-based controller does not operate as before.
If the changes are significant, the model needs to be
redesigned and the controller retuned. In industrial
applications, many controllers are adjusted and put
into operation without further maintenance. It is
then left to the operator to observe and make
decisions about appropriate actions when an
abnormal condition occurs.

The commercial consequences of performance
degradation are reflected in increased energy
consumption and lower quality final products. The

goal of the control system, in the broad sense, is to
maintain closed-loop performance at the highest
level under all circumstances. This is achieved by
monitoring the closed-loop system, diagnosing
events that cause performance degradation and,
finally, by undertaking the appropriate corrective
actions.

In general, performance monitoring methods can
be signal-based or model-based [2]. The focus
below will be on performance monitoring of the
closed-loop on the basis of statistical tests on
residuals. The residuals produced by the reduced
order model comprise the unmodelled dynamics.
Using the traditional test statistics, which is the sum
of the squared residuals normalised by the noise
variance, could lead to false alarms.

In this work, test statistics on the residuals of the
reduced order model is proposed. It makes use of
the stochastic embedding description of the
unmodelled dynamics [3], which is presented in
Section 2. In Section 3, a change detection test



based on the inexact ARX model is described,
followed by a discussion in Section 4. In Section 5,
the proposed change detector is tested on a
simulated DC motor-generator. Finally, some
concluding remarks are given in Section 6.

2 Process description
We assume that the nominal process behaviour is
described by the autoregressive model
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where (t) is the regression vector, 6 eR" denotes

the model parameters corresponding to the current
(possibly) faulty data record, y(t) is the process

output, w(t) is Gaussian noise N(O,G%V) with
known variance. The term (pT (t)n is FIR model of
the unmodelled process dynamics with

o' (t) =[u(t=1),u(t-2)....,u(t-L)] )

n=Mnp.ngon ] 3)

while u is input signal and n; are the coefficients
of the finite impulse response model. To avoid
estimating L-parameters of the FIR model, the
unmodelled dynamics is represented in the
statistical framework as a realisation of the random
variable. It is assumed that the coefficients of the
impulse  response  associated  with  the
undermodelling is zero mean Gaussian [3]
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with the covariance matrix Cﬂ which is assumed to

have an exponentially decaying diagonal structure
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This corresponds to the exponentially decaying
variance of the undermodelling impulse response

[3]
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Equation (6) defines the bounds within which
the undermodelling impulse response is found with
certain probability

The parameters c,. of the noise and
undermodelling o, A can be estimated from the
residuals’ vector using the maximum likelihood
method.

3 Change-detection test based on the

reduced process model

The problem is to detect whether the process
parameter vector 6 has changed.

To decide whether the process parameters have

changed or not, two hypotheses have to be tested
(Basseville and Nikiforov, 1993), i.e.:

H, :nochange in the process 0 = 0, versus
H; :change 0 #0, .

In general, the process change effects the mean
and variance of the model residuals €. The change
in the time constants only causes change in the
residuals’ variance. Therefore, any deviation from
the nominal values can be revealed by the detection
of change in the variance of the model residuals. To
detect changes in the control system, the scheme
shown in Figure 1 is used.

The nominal model parameters are identified
from the available sequence of data, collected
during the normal process operation. This can be
represented as the mapping

(y@.y® ). (WN)Y(N) ) > g

The model residuals are obtained by comparing
the model parameterised by 0, to the output data

in the sliding window of length N, i.e. {y(t), . ., y(t-
N)}

e(k) = y(k) -y (k). .
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Figure 1: The residuals’ generation

The sufficient test statistics for the variance
change is derived from the log-likelihood ratio
(Rohatgi, 1976) and has the following form

tNe?(k) ®)

kZ::t o2 (k)

ex*(N).

Here, it is supposed that the statistical properties
of the measurement noise and the undermodelling
do not change with time. o(t) is the residuals’
variance under hypothesis Hy (no change in the
process). Under the hypothesis of no change 6=0,
the variance of residuals reads
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Since the covariance matrix E[n'n] has an
exponentially decaying diagonal structure (see 5),
the expression (9) becomes
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The nominal model parameters 6, the noise
variance o2, and the variance of FIR model

coefficients E[n,-z]: o', needed in the calculation
of the test statistics (8), are estimated from the
training data collected during the non-faulty
process operation. In the case of “no change” the
test statistics (8) is X2 -distributed with N degrees
of freedom.

The hypothesis Hy is rejected at level o if one
of the following conditions holds
=N g2 (k) (11
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where ¢, ,,, and c,,, are taken from the y’-
distribution for the desired degree of confidence a.

4 Discussion

The variance (10) consists of the two summands:
the contribution of the process noise o, and the
undermodelling error (the rest of the expression).

The prediction error variance depends on the
input signal at time instants t-1, t-2, ..t-L, because
the undermodelling corresponds to the dynamics
present in the process but not captured by the
model.

The test statistics (8) is mathematically
sufficient only for detecting changes in the variance
of the residuals. Since a change in the process
parameter generally results in a change of the mean
and variance of the residuals, it is necessary to test
the residuals for variance change as well as for
mean value change. Nevertheless, in practice
detecting variance changes in the model residuals
turns out to be quite an efficient tool for detecting
process changes.

5 A simulated example

The performance of the proposed change detector is
illustrated on a DC motor-generator model. The
transfer function of the simulated process is [6]
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The measurement noise w(t) is normally
distributed with a variance o2 =0.01>. The PI

controller was designed using the pole placement
method on the basis of the first order model. The
desired characteristic polynomial is

Ac(q ) =(1-0.9608q ). The nominal model

and controller parameters obtained by the iterative
identification and controller design [6] are as
follows

_ 0.1067q" (13)
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Figure 2 shows the matching between the
process and the model in the Bode diagram.

Figures 3 and 4 show the performance of the
closed-loop system in a fault-free and faulty case.
The process change is emulated by changing the
process poles. The output signal follows the
reference before and after the fault occurrence
(Figure 4), because the controller compensates for
the fault by decreasing the input signal (Figure 3).

The residuals are depicted in Figure 5. For N=1,

the term cl,a/zcsz(t) in equation (11) can be
regarded as the threshold for the squared residual
g(t). Figure 6 shows the squared residuals and

for N=1.

Since an estimation of the undermodelling was
included in the calculation of the residuals’
variance, the threshold changes with the input
signal. The result is that the number of false alarms
is reduced. If undermodelling is disregarded, the

the corresponding threshold ¢, ,0°

threshold for the squared residuals ¢, ,,0¢

depends only on the noise variance (depicted in
Figure 6 by the dashed line) and is completely
inappropriate. Use of such a threshold would result
in false alarms. Figure 7 shows decision-making
about hypothesis Hy and H; on the basis of signals

in Figure 6. It can be noticed that detecting changes
on the basis of one sample of residuals results in
diagnostic instability. To be able to track the trend
of residuals, we included each time 500 samples
(N=500) of residuals in the calculation of the test
statistics. The test statistics based on 500 samples
strongly increases when the fault is injected into the
process (Figure 8). After a short delay, the test
statistics exceed the threshold c;_,» which results in
arejection of hypothesis Hy (Figure 9).
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Figure 2: Bode diagram of the process (solid
line) and the model (dashed line)
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Figure 3: The input signal of the process before
and after the parameter change

‘change

0 i i i i i i i i i i
100 120 140 160 180 200
t

Figure 4: The output signal of the process before
and after the parameter change
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Figure 6: The squared residuals; the threshold in
the case where undermodelling is considered (solid
line); the threshold in the case where

undermodelling is disregarded

Decision

T T T T T

no change

change

0

20 40 60 80 100

120 140 160 180

200

Figure 7: Deciding between Hy and H; for N=1
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Figure 5: The residuals before and after the
parameter change
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Figure 9: Deciding between Hy and H; for N=1

6 Conclusions
Statistical testing for a change in residuals’
variance has been described in significant detail. It
is based on checking the test statistics, i.e. the sum
of squared residuals normalised by the variance.
The method of testing the variance change was
extended to the application of reduced order models
by including a more precise estimation of the model
error. The unmodelled dynamics is thought of as a
realisation of a random process with parameterised
second-order statistics (as suggested by Goodwin,
1993). In this way, we gain by reducing the number
of false alarms, because the threshold for fault
detection which depends on the estimated model
uncertainty, is more appropriately chosen. The

latter statement has been confirmed by the
simulation using a DC motor generator set-up.

The stochastic embedding approach to the
estimation of the model error offers a description of
the average properties of undermodelling, thereby
resulting in a pessimistic estimate of the model
error. In the future, we intend to use a more precise
description of the undermodelling error in order to
increase the sensitivity of the change detector.
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