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Abstract: - This paper outlines an adaptive wavelet-based perceptual audio coding scheme attending to various
entropy-type criteria. Its performance using some different wavelet families and various filter lengths and
decomposition depths has also been investigated. An optimal choice of these parameters is accomplished in
order to evaluate both quality and bit rate of compressed signals for four different entropy-type criteria and four
representative samples of audio material. The proposed coding scheme performs a periodized wavelet packet
transform for each audio frame leading to a decomposition tree which is adapted to the characteristics of the
audio frame attending to some entropy criterion. After time-frequency mapping, a thresholding to zero step is
carried out to take advantage of entropy coding methods. Next, an uniform quantifier controlled by a
psychoacoustic model taking advantage of the masking effect in human hearing is used. Finally, statistical
redundancies of audio signals are reduced by using Huffman and run length coding. Experimental results
indicate that the proposed approach can achieve almost transparent coding of monophonic CD quality audio
signals at bit rates of approximately 64 kb/s (1.45 bit/sample). In addition, the use of the periodized wavelet
transform leads to lower coding delay than other similar methods in the literature. The performance of our
method is compared to some non-adaptive wavelet-based methods and to MPEG standard in terms of
compression versus quality performance.                       IMACS/IEEE  CSCC'99  Proceedings, Pages:3441-3445
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1   Introduction
Coding of high-fidelity audio signals has become a
key technology in the development of audio systems.
In many applications, such as the design of cost-
effective multimedia systems and high quality audio
transmission and storage, the goal is to achieve
transparent (or nearly transparent) coding of hi-
fidelity audio signals at the lowest possible bit rates.

Most audio coding algorithms rely on: 1) removal of
statistical redundancies in the audio signal, and 2)
exploitation of masking properties of the human
auditory system to “ hide” distortions. Traditional
subband and transform coding techniques provide a
convenient framework for coding based on these two
principles. They also indicate that almost
perceptually transparent coding of monophonic CD
quality signals can be achieved approximately at bit
rates of 96 kbps. Several of these techniques have
contributed to the development of the ISO-MPEG [1]
audio coding standard. More wavelet-based recent
works include the adaptive wavelet selection method

combined with dynamic dictionary coding [2], and
the pitch-synchronous wavelet transform [3], which
claim to achieve similar quality at bit rates of 64
kbps with fs=44.1 kHz and 21 kbps with fs=8 kHz,
respectively. The disadvantage of these two methods
is the long coding delay. This factor is very
important for real-time coding applications.

In comparison to the above techniques, our approach,
based on a adaptive wavelet packet transform
(controlled by some entropy criterion) combined
with hard thresholding, uniform quantization and
entropy noiseless Huffman coding, claims
perceptually transparent coding at similar bit rates
but with shorter delay. The main music related
applications of our audio coding scheme are: storage
and editing of digital audio on small computers
(home studio), computer-based multimedia, digital
audio broadcasting (DAB), transmission via narrow-
band ISDN for reporting links, and tele- or
videoconferencing.



2   The proposed audio coding scheme
The audio coding scheme we outline here can be
seen in figure 1 (encoder) and figure 2 (decoder),
and it consists of the following stages:

• First of all, the input audio signal is divided into
overlapping windowed frames of 2048 samples each
one. This task is accomplished by an input buffer.
Other frame lengths are also possible.
• Afterwards, each audio frame is decomposed in M
subbands (being M a variable number) using an
adaptive technique based on some entropy criterion.
This method adaptively matches the decomposition
tree to a given signal.
• In order to maximize the coding gain, the number
of non-zero wavelet coefficients is reduced by using
a hard thresholding stage. The thresholding level is
computed by the following expression:

thr_lev = Cte*mean (abs (detail coeff. level 1)     (1)

• A masking threshold is estimated for each audio
frame to determine the inaudible quantization noise
that can be added in each subband. The used
psychoacoustic model assumes that the masking is
an additive process. In this stage, we also estimate
other parameters, such as the peak value in each
subband.
• Previous estimates allow us to compute the step
size necessary to quantify the wavelet coefficients
within each subband without any noticeable noise.
In our scheme, the encoder consists of two steps:
uniform quantization and entropy noiseless coding.
• Input audio signal is represented by their coded
wavelet coefficients. These coefficients are
multiplexed with the side information, which
includes an index to represent the selected best basis,
giving rise to the audio bit stream transmitted to the
decoder.

Fig 1: Encoder structure.

• The decoder receives the audio bit stream and, by
demultiplexing, extracts the side information and the
coded wavelet coefficients. From the side
information, convenient step sizes to decode wavelet
coefficients are obtained.
• The inverse wavelet packet transform recovers the
output signal from the decoded wavelet coefficients.

Fig. 2. Decoder structure

2.1 The adaptive wavelet packet transform
In discrete-time signal processing, the wavelet
transform can be implemented using only two filters
(high-pass and low-pass filters), that must satisfy
certain orthogonality conditions to constitute a
perfect reconstruction filter bank [4]. The one-step
transform shown in figure 3 can be iterated over the
low-pass signal (or approximation signal) to obtain
higher resolution in the frequency domain, resulting
the so called “discrete wavelet decomposition”.

Fig. 3. Filterbank to implement one-step wavelet transform

To adapt the wavelet transform to the analysis made
by the human hear, it can be used a “wavelet packet
decomposition”, that is a generalization of wavelet
decomposition and offers a richer signal analysis.
The wavelet packet decomposition is free to
continue in upper and lower bands, as it is required,
without losing the orthogonality and perfect
reconstruction features.
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This type of decomposition is represented by a
binary tree in which one has the freedom to stop or
continue the decomposition at any node. Several
choices for a basis are thus possible, and it is
interesting to find an optimal decomposition with
respect to a convenient criterion, computable by an
efficient algorithm [5]. We are looking for a
minimum of the criterion. Classical entropy-based
criteria are well suited for efficient searching of
binary-tree structures and describe information-
related properties for an accurate representation of a
given signal.

In this paper, we evaluate four different entropy
criteria (many others can also be used) to match the
decomposition tree to a given data set (an audio
frame). The entropy E must be an additive cost
function, such that E(0)=0 and E(s)=sum(E(si)),
where s is the signal and si the coefficients of s in a
basis. The entropy criteria used here are:

• The (non-normalized) Shannon entropy.
E1(s) = - sum (si

2 log (si
2))                      (2)

• The concentration in lp norm with 1 ≤ p < 2.
  E2(s) = sum (|si |

p) = ||s||p                         (3)
• The logarithm of the “energy” entropy.

E3(s) = sum (log (si
2))                             (4)

• The threshold entropy.
E4(s) = 1 if |si|

 >ε and 0 elsewhere          (5)

Starting with the root node, the best tree for each
audio frame is calculated using the following
scheme: a node N is split into two nodes N1 and N2

if and only if the sum of the entropy of N1 and N2 is
lower than the entropy of N. This is a local criterion
based only on the information available at the node
N. For each node splitting, we use the periodized
(periodical extension) wavelet transform. In order to
avoid the clicks due to the border effect inherent to
this kind of transform, the audio data is first divided
into overlapping analysis frames. Each frame is then
windowed with a trapezoidal window. Experimental
tests tell us that only a small overlapping (20
samples) is sufficient to eliminate the clicks.

2.2 The psychoacoustic model
Masking is a psychoacoustic fenomenon that renders
low-level signals concentrated in a given frequency
region inaudible in the presence of higher signals at
neighboring frequencies. The masking model used
here is based on the well-known method developed
by Johnston [6], but with some notable
improvements. It relies on the computation of:

1) Summations of signal energy over frequency
regions corresponding to critical bands of the
auditory human system.

2) A cochlear spreading function, which describes
the effects of signal energy in one critical band
over the masking effects in adjacent bands.

3) A measure of tonality for each spectral
component calculated.

4)  A masking threshold is obtained based on the
previous frequency domain analysis.

This masking threshold is defined in the Fourier
domain. It must be translated to the wavelet domain
to determine a perceptual upper bound on the
quantization noise power that can be tolerated in
each frequency band for each given audio frame. To
incorporate the psychoacoustic information to the
wavelet domain, we perform a renormalization
process [7] (instead of deconvolution, which may
cause instability). Another approach to translate the
masking threshold condition to the wavelet
transform domain is based on a perceptual norm
criterion [2], but it has the disadvantage of the need
for long and very selective filters to implement the
wavelet transform. The adopted approach in our
coding scheme avoids this fact and makes possible
to translate the psychoacoustic information into the
wavelet domain using any kind of wavelets.

3   Experimental results
Now, let us discuss some experimental results that
we have obtained with the proposed coding scheme.
Throughout the simulations presented in this section,
a five level decomposition is always performed,
because it allows transparent audio coding with the
lowest complexity and delay. The set of audio
source material used to check the performance of
our coding scheme is listed in table 1.

20 kHz source material sampled at 44.1 kHz, 16 bit PCM

CODE INSTRUMENT / STYLE

Vocal Female vocal pop song
Wind Wind instruments
Violin Violin with orchestra
Piano Solo piano

Table 1. List of audio source material used in the tests

3.1 Objective quality measure
We have chosen the segmental SNR measure to
provide an objective measure of the performance of
our coding scheme.



This measure is more correlated with the subjective
quality measures than a single SNR computed for
the whole audio signal.

Table 2 shows the behaviour of the four entropy
criteria described in section 2 for the audio material
listed in table 1.

Vocal Piano Wind Violin

Shannon 1,48 / 28,10 1,56 / 23,30 1,40 / 24,17 1,40 / 26,20

Log energy 1,47 / 28.00 1,53 / 22,85 1,40 / 24,18 1,41 / 26,40

Threshold 1,49 / 28,05 1,52 / 22,31 1,49 / 24,90 1,30 / 26,13

Norm (p=1) 1,47 / 28,00 1,58 / 23,34 1,40 / 24,05 1,40 / 26,39

Table 2. Performance of different entropy-type criteria.
Bit rate (bit/sample) / segmental SNR (dB) values.

From table 2, we can deduce that all the entropy
criteria evaluated have a similar behaviour, and
therefore in the rest of the simulations we have used
Shannon criteria. Figure 4 shows the performance of
our coding scheme with the number of filter
coefficients for different wavelet families. The
wavelet families considered for comparison are:
minimum-phase Daubechies wavelets (DAUB),
orthogonal Coiflet wavelets (COIF) and
biorthogonal spline wavelets (BIOR). These wavelet
families are asymmetric, near symmetric and
symmetric, respectively. They all are compactly
supported.

Fig. 4. Bit rate and segmental SNR versus filter length for
different wavelet families. Audio source code: Vocal.

From figure 4, we see that as the number of filter
coefficients increases the coder performance
improves. However, this improvement appears to
reach an asymptote for filter lengths greater than 20
coefficients. For higher filter lengths, the subjective
quality of the encoded signals decreases. So, we
choose this value as an optimal filter length. If we
compare the behaviour of the three evaluated
wavelet families, it can be deduced that DAUB and
COIF wavelets provide similar results for the
optimal filter length, and they both make better than
BIOR wavelets. Therefore, we are interested in
orthogonal wavelets, which agrees with other works
in the literature [8].

Finally, in table 3 we compare our coding approach
to some others wavelet-based. The DAUB family has
been chosen for the experiments here performed
after an evaluation of the performance of various
wavelet families. All the methods considered for
comparison make use of the same psychoacoustic
model and are based on:

A)  Non-periodized critical band WPT.
B)  Periodized critical band WPT.
C)  Periodized critical band WPT (with overlapping)
D)  Periodized adaptive WPT (with overlapping)
E) Periodized adaptive WPT (with overlapping,

thresholding and entropy coding).

Vocal Piano Wind Violin

A 1,72 / 25,8 1,65 / 23,06 1,47 / 24,24 1,54 / 27,00

B 2,69 / 25,26 1,70 / 22,00 2,33 / 23,23 2,48 / 25,70

C 1,99 / 24,71 1,89 / 22,00 1,44 / 23,23 1,51 / 25,60

D 2,20 / 28,57 2,15 / 24,08 1,65 / 24,34 1,69 / 26,25

E 1,48 / 28,10 1,56 / 23,30 1,40 / 24,17 1,40 / 26,21

Table 3. Performance of different wavelet-based coding
methods. Bit rate (bit/sample) / segmental SNR (dB).

It can be seen that the method who provides better
results for the whole audio material is our coding
method (here coded as E). Besides, it must be noted
the substantial improvement due to overlapping. It is
also interesting to emphasize the influence of the
adaptive WP decomposition for the good behaviour
of our coder.

Comparing our approach to the one based on non-
periodized WPT (here coded as A), we find our
approach to be superior in two important aspects:
coding delay and subjective quality.



The results shown in table 3 reveal that our coder is
better adapted to signals with sharp attacks than to
nearly steady signals. The best results are obtained
for vocal source and the worst for piano source.

3.2 Subjective quality measure
We have carried out an informal subjective test with
a reduced group (20 persons of our research group).
Two types of listening tests have been performed at
a binary rate of about 64 kbps:

a)   Test of transparency
b) Comparison with MPEG layer 2 and 3.

The results confirm that the proposed coder achieves
nearly transparent coding with all the audio sources
evaluated. Also, its quality is better than the MPEG
layer 2 one, where a distortion such as a filtering
effect has been observed at this binary rate, and
similar than the MPEG layer 3 one.

The quality of the piano signal encoded with the
proposed coding approach was not as good as that of
the other audio pieces. The piano sample contains
long segments of nearly steady sinusoids. The
wavelet-based coder does not seem to handle steady
sinusoids as well as other kinds of signals. It needs
to be further optimised for such signals.

4   Conclusion
We have just presented a novel audio coding method
based on adaptive optimal wavelet decomposition.
Our studies indicate that optimization of the wavelet
decomposition to match the audio data clearly
results in a significant reduction in the bit rate
requirement for the same audio quality.

The main advantages of the proposed audio coder
are: low bit rate requirement for nearly transparent
audio compression, lower complexity and delay
compared to other wavelet-based coders [3], and
high flexibility to be used in diverse applications,
like multimedia communications.

Several improvements in the proposed method are
possible in terms of reducing its computational
complexity and its bit rate requirements. The most
promising approach to bit rate reduction
undoubtedly involves vector quantization of groups
of wavelet coefficients [9][10]. This will be one of
the focus of our future studies.

An interesting way to reduce the computational
complexity of our approach would be the
development of a masking model directly in the
wavelet domain. This will be another research issue
to work on. Also, it would be insteresting to check
the performance of our scheme with different
entropy coding methods [10][11].

Other issues to work on are scalable coding, stereo
and multichannel coding, optimal choice of the
wavelet family for each audio frame, evaluation of
different psychoacoustic models and more extensive
subjective quality evaluation.
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