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Abstract: - Device model accuracy not only depends on the model itself but also on the procedure used for parameter
extraction and on the experimental data collected for the extraction. In analog circuits, many of the performances depend on
the small signal parameters of the devices rather than on the static current (for example the gain of a differential amplifier).
Hence experimental measurements of small signal parameters must be collected to increase model accuracy. In this paper an
extraction procedure that uses experimental data both on drain current and on small signal parameters of MOSFET’s is
proposed. It is shown the correspondence between the inclusion of small signal parameters in the optimization procedure and
the use of the off-diagonal terms of the covariance matrix in the Maximum Likelihood Estimation Method.
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1   Introduction
One of the problems encountered in device modeling for
analog circuit CAD is related to the prediction of small-
signal parameters. As was recently pointed out in [1],
MOSFET models, which are able to accurately predict drain
current, may make very poor predictions of small-signal
parameters. This problem becomes particularly serious in
the design of voltage amplifiers where the voltage gain
inversely depends on dsg . Thus, in general a MOSFET

model for analog design should give accurate values for
small-signal quantities such as mg , mbg , dsg , and

capacitances.
Many models are inherently incapable of giving a
reasonable fit to small signal parameters due to
discontinuities or missing effects in the equations. However,
in many cases this problem is not a consequence of
weakness in the model. Instead, it might depend on the
extraction method for the unknown parameters, which uses
experimental data on drain current DI  alone, without any
information on the actual behavior of small-signal
parameters. In order to obtain a model adequate also for
small-signal analysis, these two conditions have to be met:
i) experimental data on small-signal parameters must be
collected together with DC drain current measurements;
ii) the extraction method must take into account the error
between model and data for DC current and small signal
parameters.
Following these assumptions some measurements of DC
drain current and small signal parameters have been carried
out on test devices and a model for the MOSFET drain

current derived by taking into account the small signal
measurements has been obtained. Section 2 shows the
theory underlying the proposed methodology. Section 3
resumes the obtained experimental results. Finally Section 4
concludes the work.

2   Theory outline
Let us consider that a model for the DC drain current has
been chosen and defined by a function

( )sx,fy = (1)
where y is the drain current, x is the vector of independent

variables, i. e. [ ]  ,,,, TLWVVV bsdsgs and s is the parameter

vector, which usually represents quantities that have
physical significance. Once the model (1) has been
assumed, the unknown parameters s can be derived from
experimental data by using estimation theory.
A complete characterization of device behavior can be
achieved by gathering several sets of data

( )  ,,,,= T
,,1, Nddd µηµµµ KKd      M,1,= Kµ (2)

from M different dice by imposing the same value ηx  for

the independent variables, where N,1,= Kη . The error ε,
between model and experimental data, can be considered as
a realization of a random variable that takes into account for
measurement errors, intra-die and inter-die technological
tolerances and model inaccuracy [2]. Here we assume that
the error vector µε  in the µ−th die have zero mean with

normal distribution ( )Q,0rN , that is
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and Q is the covariance matrix that is assumed to be
independent from the die under consideration.
The off-diagonal terms of Q take into account the
correlation between the errors in the same die (µ) for
different bias conditions (η). By assuming that the errors in
different dice are statistically independent each other, the
joint pdf for all the experiments is given by
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where { }ηµε= ,E . The parameter values s of model (1) are

obtained using the well-known Maximum Likelihood
Estimation (MLE) method [3]. Following these statistical
assumptions, likelihood can be written as

( )[ ]
[ ] [ ]









−−−⋅

⋅π=

∑
=µ








µ
−








µ

−

M

N

T

N

M
N

,,

,L

1

1

2

2/1exp

)det(2)(

sxfdQsxfd

QQs
(5)

The estimation of unknown parameters s and Q is thus
obtained by maximizing )( Qs,L . This non-linear
maximization can be solved by using the following iterative
scheme [2]:
Step 1) Let us consider a trial value s0 for s and the
following function is maximized

)(max 0 Qs
Q

,L (6)

whose solution is [3]
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Step 2) Use 0
ijQ  as trial value for solving the non linear

minimization problem
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The s value so found is used as a trial value in step 1). Then
the method continues until convergence is reached.
Since the number of coefficients in the matrix is high (2N2),
simplifying hypotheses are often introduced, such us
neglecting off diagonal terms and defining a model for
diagonal coefficients iiQ . For example it can be assumed

that the absolute error is independent on ix , resulting in
2σ=iiQ .

Using this assumption (8) becomes
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Another assumption usually stated is that the relative error

is independent on ix , that is ( )2
iii yQ σ=

Using this assumption (8) becomes
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Although (9) and (10) are usually adopted for parameter
extraction because of their simplicity, neglecting the off
diagonal terms in the covariance matrix Q may induce a
large error in the parameter estimation. A strong correlation
between the errors of the model against experimental data
for the same MOSFET but for two bias conditions close
each other may occur.
In the following we shall show how the off diagonal terms
can be taken into account by including small signal
parameters in the extraction procedure. Let us indicate the
covariance matrix Q as follows

...

...
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and let us suppose, for example, that the data have been
collected for different values of VGS  and ordered with

increasing value of GSV . We suppose that Q is a diagonal

dominant matrix, that is
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This assumption is acceptable since it states that the
correlation is stronger if the bias conditions are closer each
other. With previous assumption, we obtain the following

approximation for 1−Q
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Hence we obtain
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Since data have been ordered with increasing VGS , we have
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where ( )( ) GSiim Vddg ∆−≅ −µµ 1,, .

Hence to consider non vanishing off diagonal terms in the
covariance matrix is equivalent to include the small signal
parameters in the optimization procedure. On the contrary,
neglecting the off diagonal terms in the minimization of (8)
may cause model inaccuracy in the prediction of small
signal parameters.
On the other hand, taking into account the off diagonal
terms too, would cause an increasing in the complexity of
minimization of (8). For example if 50 measurements for
different bias conditions are carried out for each MOSFET,
10 MOSFET’s are considered for each die and 20 dice are
taken into account for the statistical characterization (i.e.
M=20 and N=50x10=500), 10,000 terms have to be
summed up in (8) in the case of diagonal covariance matrix,
while the number of terms becomes 5,000,000
(=500x500x20) in the general case. A compromise is to
accept hypothesis (12) which leads to a summation of
30,000 terms.
Since it has been shown the equivalence between
considering the off-diagonal terms and adding conductances
terms in the functional (8) the solution we propose is to
minimize the error between drain current model and current
measurements augmented by the error between conductance
model and conductance measurements. That is:
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where ( ) T
Nααα=α η ,...,,...,1 , ( ) T

Nβββ=β η ,...,,...,1 ,

( ) T
Nγγγ=γ η ,...,,...,1  and ( ) T

Nδδδ=δ η ,...,,...,1 are the

vectors of drain and conductance variances.
The minimization algorithm is the following:

Step 1) Let us consider a trial value 0s  for s and the
following function is maximized
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Step 2) Use the values so found for δγβα ,,,  to solve the
nonlinear minimization of
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The s value so found is used as a trial value in step 1). The
method continues until convergence is reached.

3   Results
On the basis of the theory previously outlined an accurate
model for the MOS transistor has been derived and its
validity has been checked with reference to the CMOS
section of the 2µm CCD/CMOS technology developed at
the IRST Microelectronics Laboratory for implementing
application specific electro-optical sensors. Many
measurements have been made on a test-strip that contains
p-n channel MOS transistors of different width and length.
Experimental data has been collected for DC current and
small-signal parameters.
Following the optimization procedure given by (17)-(18)
the terms δγβα ,,,  have been estimated first by assuming a

trial value 0s  for the parameters and then repeating several
times the steps 1 and 2 of the minimization algorithm. The
obtained model is depicted in Figs. 1-11 in which different
MOSFET in different bias conditions are shown. In the
Figures continuous line represent the model, while symbols
represent experimental data.
Since measurement errors are negligible, the dispersion on
the experimental data are due to die to die technological
variations in the same wafer. As you can see the agreement
between model and experimental data is good for DC drain
current and small signal parameters too.

4   Conclusions
Accurate analytical device models are required for the
design of IC, especially for analog circuits. The accuracy is
necessary not only to predict static current but small signal
parameters too. To achieve this goal the parameter
extraction procedure must take into account measurements
on drain current and on small signal quantities such as mg ,

mbg , dsg .
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