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Abstract: - Device model accuracy not only depends on the model itself but also on the procedure used for parameter
extraction and on the experimental data collected for the extraction. In analog circuits, many of the performances depend on
the small signal parameters of the devices rather than on the static current (for example the gain of a differential amplifier).
Hence experimental measurements of small signa parameters must be collected to increase model accuracy. In this paper an
extraction procedure that uses experimental data both on drain current and on small signal parameters of MOSFET's is
proposed. It is shown the correspondence between the inclusion of small signal parameters in the optimization procedure and
the use of the off-diagonal terms of the covariance matrix in the Maximum Likelihood Estimation Method.
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1 Introduction

One of the problems encountered in device modeling for
analog circuit CAD is related to the prediction of small-
signal parameters. As was recently pointed out in [1],
MOSFET models, which are able to accurately predict drain
current, may make very poor predictions of small-signa
parameters. This problem becomes particularly serious in
the design of voltage amplifiers where the voltage gain
inversely depends on g4. Thus, in generad a MOSFET
model for analog design should give accurate values for
small-signal quantities such as 0., O, U, and
capacitances.

Many models are inherently incapable of giving a
reasonable fit to small signal parameters due to
discontinuities or missing effects in the equations. However,
in many cases this problem is not a consequence of
weakness in the model. Instead, it might depend on the
extraction method for the unknown parameters, which uses
experimental data on drain current |, alone, without any

information on the actua behavior of small-signal
parameters. In order to obtain a model adequate also for
small-signal analysis, these two conditions have to be met:

i) experimental data on small-signal parameters must be
collected together with DC drain current measurements;

ii) the extraction method must take into account the error
between model and data for DC current and small signal
parameters.

Following these assumptions some measurements of DC
drain current and small signal parameters have been carried
out on test devices and a model for the MOSFET drain

current derived by taking into account the small signa
measurements has been obtained. Section 2 shows the
theory underlying the proposed methodology. Section 3
resumes the obtained experimenta results. Finally Section 4
concludes the work.

2 Theory outline

Let us consider that a model for the DC drain current has
been chosen and defined by a function

y=f(xs) (1)
where y is the drain current, X is the vector of independent

variables, i. e B/gs Ve ,Vbs,W,L] T and sis the parameter

vector, which usually represents quantities that have
physical significance. Once the model (1) has been
assumed, the unknown parameters s can be derived from
experimenta data by using estimation theory.

A complete characterization of device behavior can be
achieved by gathering several sets of data

Ay =0y Gl ) T M=1,..,M @
from M different dice by imposing the same value X, for
the independent variables, where h=1,...,N . The error e,

between model and experimental data, can be considered as
arealization of arandom variable that takes into account for
measurement errors, intra-die and inter-die technological
tolerances and model inaccuracy [2]. Here we assume that

the error vector €, in the m th die have zero mean with
normal distribution N, (O, Q), that is
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and Q is the covariance matrix that is assumed to be
independent from the die under consideration.
The off-diagonal terms of Q take into account the
correlation between the errors in the same die (m) for
different bias conditions (h). By assuming that the errorsin
different dice are statisticaly independent each other, the
joint pdf for al the experiments is given by

p(E/Q)=[(2p)" der] 2 s

where E = {emh}. The parameter values s of model (1) are

obtained using the well-known Maximum Likelihood
Estimation (MLE) method [3]. Following these statistical
assumptions, likelihood can be written as

L(sQ)= [(2p)“ det(Q)]' Y2y

exp aeQ (4)
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The estimation of unknown parameters s and Q is thus
obtained by maximizing L(S,Q). This non-linear
maximization can be solved by using the following iterative
scheme [2]:

Step 1) Let us consider a trial value s for s and the
following function is maximized

max L(s".Q) (6)

whose solution is[3]
Qj :ﬁé [dmi - f(Xi ’SO)] [dmj - f(Xj’SO)]- (7

Step 2) Use Q7 as trial vaue for solving the non linear
minimization problem

(8] Q- f(x). ®)

The svaue so found is used as atrial value in step 1). Then
the method continues until convergence is reached.

Since the number of coefficientsin the matrix is high (2N2),
smplifying hypotheses are often introduced, such us
neglecting off diagonal terms and defining a model for

diagonal coefficients Q, . For example it can be assumed

M
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that the absolute error is independent on X;, resulting in
Qi = s?.
Us ng this assumpti on (8) becomes
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Another assumption usualy stated is that the relative error
isindependent on X, , thatis Q. = (S Y, )2
Using this assumption (8) becomes

by g d - F8¢,89 §
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Although (9) and (10) are usually adopted for parameter
extraction because of their smplicity, neglecting the off
diagona terms in the covariance matrix Q may induce a
large error in the parameter estimation. A strong correlation
between the errors of the model against experimental data
for the same MOSFET but for two bias conditions close
each other may occur.

In the following we shall show how the off diagonal terms
can be taken into account by including small signd
parameters in the extraction procedure. Let us indicate the
covariance matrix Q as follows

a b ¢ d
b a b ¢
G b oa b .. (11)
d ¢ b a

and let us suppose, for example, that the data have been
collected for different values of Vg and ordered with

increasing value of V4. We suppose that Q is a diagonal

dominant matrix, that is
2

. G
S>> L >>

i‘ (12
al |a al |a

This assumption is acceptable since it states that the
correlation is stronger if the bias conditions are closer each
other. With previous assumption, we obtain the following

approximation for Q"

1>> >>

and ‘H

l/ai B bl/a1a2 0 0
B bl/a1a2 1/8.2 B bz/a2a3 0 (13)
0 B bz/azas l/as B bs/a3a4
0 0 B bs/a3a4 1/34

Hence we obtain
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Since data have been ordered with increasing V4, we have
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Hence to consider non vanishing off diagonal terms in the
covariance matrix is equivaent to include the smal signa
parameters in the optimization procedure. On the contrary,
neglecting the off diagonal terms in the minimization of (8)
may cause model inaccuracy in the prediction of small
signal parameters.

On the other hand, taking into account the off diagona
terms too, would cause an increasing in the complexity of
minimization of (8). For example if 50 measurements for
different bias conditions are carried out for each MOSFET,
10 MOSFET's are considered for each die and 20 dice are
taken into account for the statistical characterization (i.e.
M=20 and N=50x10=500), 10,000 terms have to be
summed up in (8) in the case of diagona covariance matrix,
while the number of terms becomes 5,000,000
(=500x500x20) in the general case. A compromise is to
accept hypothesis (12) which leads to a summation of
30,000 terms.

Since it has been shown the equivalence between
considering the off-diagonal terms and adding conductances
terms in the functional (8) the solution we propose is to
minimize the error between drain current model and current
measurements augmented by the error between conductance
model and conductance measurements. That is:

max L(sa,b,g,d) =

s,ab,g.d
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where a :(al,...,ah,...,aN)T, b= (bl,...,bh,...,bN)T,

g:( 1,...,gh,...,gN)T and d=(d1,...,dh,...,dN)T are the
vectors of drain and conductance variances.

The minimization algorithm is the following:

Step 1) Let us consider a tria vaue s° for s and the
following function is maximized

max L(s’,a,b,g,d)

s,a,b,g.d

whose solution is

aﬂ:ﬁé Iy - f(%,)|

g-14%, OOy
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Step 2) Use the values so found for a,b,g,d to solve the
nonlinear minimization of
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The s value so found is used as a trial value in step 1). The
method continues until convergence is reached.

3 Results

On the basis of the theory previously outlined an accurate
model for the MOS transistor has been derived and its
validity has been checked with reference to the CMOS
section of the 2um CCD/CMOS technology developed at
the IRST Microelectronics Laboratory for implementing
application  specific  electro-optical  sensors.  Many
measurements have been made on a test-strip that contains
p-n channel MOS transistors of different width and length.
Experimental data has been collected for DC current and
small-signal parameters.

Following the optimization procedure given by (17)-(18)
the terms a,b, g,d have been estimated first by assuming a

trial value S° for the parameters and then repeating several
times the steps 1 and 2 of the minimization algorithm. The
obtained model is depicted in Figs. 1-11 in which different
MOSFET in different bias conditions are shown. In the
Figures continuous line represent the model, while symbols
represent experimental data.

Since measurement errors are negligible, the dispersion on
the experimental data are due to die to die technological
variations in the same wafer. As you can see the agreement
between mode and experimenta data is good for DC drain
current and small signal parameters too.

4 Conclusions

Accurate analytical device models are required for the
design of IC, especialy for analog circuits. The accuracy is
necessary not only to predict static current but small signal
parameters too. To achieve this goa the parameter
extraction procedure must take into account measurements

on drain current and on small signal quantities such as g,
gn‘b ’ gds )
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