
Binary Tree Structure for Formal Veri�cation of

Combinational ICs

FATMA A. EL-LICY, and HODA S. ABDEL-ATY-ZOHDY

Microelectronics System Design Laboratory

Department of Electrical and Systems Engineering

Oakland University, Rochester, MI 48309-4401

USA

E-mail: zohdyhsa@oakland.edu

Abstract:- Binary Tree structure is used to represent circuit design speci�cations as well as imple-

mentations and has been manipulated with di�erent tools to achieve design veri�cation.

The veri�cation methodology is based on design speci�cations and layout descriptions and provide

two binary trees of the design speci�cation-implementation functionality. Desired design behavior

is represented as propositional logic in Disjunctive Normal Form (DNF), which has been chosen to

accelerate and facilitate the matching process for design correctness.

Key-Words:- Binary tree structure, formal veri�cation, digital integrated circuits.

1 Introduction

The production of complex, Very Large Scale

Integrated (VLSI) chips is very expensive and

time consuming. It requires multistage hier-

archical design methodology, as well as precise

models for each stage. It is, therefore, impor-

tant to detect and eliminate design errors prior

to production. While extensive simulation may

provide a degree of con�dence about the cor-

rectness of a design, it is not inclusive. Thus,

formal hardware veri�cation methods are needed.

Formal veri�cation is a method by which the

implementation of a design is formally proved

to satisfy the design speci�cation.

Veri�cation is also complementary to auto-

mated synthesis, where, an implementation of

a design is produced and is assumed correct by

construction. For high quality designs, how-

ever, custom (manual) design methods are prefer-

able. Formal veri�cation can then be used to

con�rm the satis�ability of these designs.

In this paper, a new approach for combina-

tional circuit veri�cation is presented. The method-

ology, as well as the structure of electrical inte-

grated circuit design speci�cation/implementation

constitutes manipulation of logic binary trees to

accelerate and facilitate veri�cation process.

Binary tree structure, as circuit representa-

tion, has been adopted in some veri�cation sys-

tems as a prestructure [1,2,3]. This structure,

however, is then transformed into di�erent graph

structures e.g. Binary Decision Digram, (BDD)

or Ordered Binary Decision Digram, (OBDD)

[1,2]. Such representation is not e�cient for se-

rial or computational circuits, because of the ex-

plosion of the size of transition relations, which

is exponential with respect to the number of

primary inputs. Formal veri�cation has to be

performed in a formal environment, Figure 1

present a block diagram of the system. The

main components are:

n1 n2 n3
n4

m1
m2 m3 m4

OR

AND

AND

OR

AND

AND

Compare Verification
Results

Simplification

Simplification

Verification System Structure

Parser

LTL

SBT

LBT

 SAS

 PS

DNFSBT

DNFLBT

 PS

Figure 1: Block diagram for the veri�cation sys-

tem structure

1. Parser [4]: The Parser is applied to cir-

cuit design speci�cation, which could be

a Hardware Description Language (HDL).

The parsing process generates a parse tree

for the executable statements and a sym-

bol table. Symbol table constitutes names

and types of design parameters, which in-

volve input, output, and internal variables,

that re
ect design speci�cations.

2. Layout To Logic tool (LTL) [4]: LTL is

applied to design implementation in a form

of SPICE �le, to generate a formulae re-

ecting desired layout functionality. The

formulae are logic expressions represented

by propositional logic binary trees.

3. Interface environment for the set of design

variables, including:

� Symbolic Arithmetic Solver (SAS):

Arithmetic expressions involved in de-

sign speci�cations are applied to SAS

to generate binary equivalent expres-

sions.

� Propositional Solver (PS): To manip-

ulate propositional logic expressions

involved in the design. One of its

main components is the Disjunctive

Normal Form (DNF) converter which

generates a unique and minimal for-

mula (sum of product) for any given

function. DNF n-ary trees of Speci�-

cations Binary Trees, DNFSBT, are

generated for all formulae involved in

design speci�cations including logic

and conditional expressions. The same

transformation process is carried out

for binary trees of design implemen-

tation. That produce m-ary trees

in DNF, DNFLBT, from the Layout

Binary Trees, (LBT).

� Compare: DNFLBT and DNFSBT

are compared for equivalence, impli-

cation or contradiction, using com-

pare tools. Veri�cation results in-

dicate whether the given DNF trees

are isomorphic (totally matched) con-

stitutes implications, or contradiction.

The introduced system veri�es design layout

against design speci�cation. The methodology

is to bring the layout description up into an

abstract form of propositional logic. The speci-

�cation is decomposed from HDL into the logic

level of abstraction to meet with that of the

implementation. The two abstractions are then

compared for implication if not equivalence.

Both abstractions are represented as binary trees

of propositional expressions. These expressions

are simpli�ed into Disjunctive Normal Form to

accelerate equivalence checking.

2 Interface Environment

Binary trees generated from layout are randomly

constructed from transistors and connectors into

NAND, NOR, or even XOR boolean expres-

sions. The order and the structure of the gen-

erated expressions require further re�nement to

facilitate and accelerate veri�cation process.

Also, the semantics of the generated parse trees

may not be totally logic . It might include

arithmetic, conditional, looping and other con-

structs. Therefore, transformation tools are added

to convert parse tree expressions into its logical

equivalence.

2.1 Symbolic Arithmetic Solver

Expressions involved in the parse trees are trans-

formed into logical expressions through the Sym-

bolic Arithmetic Solver (SAS). It includes set

of routines to transform arithmetic expressions

into its logical equivalence. That includes, Bi-

nary adder, subtracter, multiplier, and nega-

tion.

Let ai 2 A, and bi 2 B, where A, and B are

two arrays of size n and m respectively. And let

R be an array of a size dependent on n, m and

the operation to be carried out. The following

are sample algorithms of the SAS:

BINARY ADDER(A,B,n,m): R;

begin

c nil

If n � m then

8 ai 2 A and bi 2 B, i=1..m do

ri XOR(ai; bi ,c)

c (c OR ai AND bi) AND (ai OR bi);

8ai 2 A, i=m+1..n do

ri XOR(c; ai)

c ai AND c;

rn+1 c

else R BINARY ADDER(B,A,m,n);

end.

BINARY Multiplier(A,B,n,m):R;

begin

Row Generate Multiplicand rows(A,B,n,m)

D Row0

R0 D0

8j; (1 � j < min(n;m)) do

Shift-Right(D)

D BINARY ADDER(Rowj,D,

max(n,m),max(n,m)-j)

Rj Dj

end.

Generate Multiplicand rows(A,B,n,m):Rows;

begin

if n � m then

8 bi 2 B, i=1..m Do

8 aj 2 A, j=1..n Do

Rowi;j bi AND aj

else

Rows Generate Multiplicand-rows(B,A,m,n)

end.

Where AND,OR and XOR are the operators for

logical product, logical sum and logical exclu-

sive sum, respectively, D is a one dimensional

array, Row is a two dimensional array, \max"

and \min" are functions that return the max-

imum and the minimum of two given values,

respectively, and \Shift-Right", is a simple func-

tion that shifts a given bit array one bit right.

Two's complement subtraction is implemented

in the subtracter algorithm, it has the same

structure and almost same steps as the Binary

adder except that the subtrahend variable is

negated. Negation algorithm \Negate", consti-

tute pre-appending the negation operator \NOT"

to a given expression (subtree). It is applicable

for simple and array variables.

2.2 Propositional Solver

All logic expressions generated by the SAS and

LTL tools are manipulated to generate uniform

expressions in DNF.

Propositional Solver, (PS), tools includes set

of routines to manipulate propositional binary

tree expressions. It provides tools to combine

subtrees, with di�erent operations (ANDing, OR-

ing, XORing and Negating); to decompose a

tree into subtrees and to transform a tree into

di�erent patterns (e.g., pure NAND, or pure

NOR expressions). DNF converter, is the most

useful tool for our application. As shown in

Fig., 1 a propositional expression is presented

as a binary tree, the variables are the tree leafs,

while the root and internal nodes are boolean

operations. Each subtree root (boolean opera-

tor) has left and right subtrees corresponding to

its left and right operands. Negation operator

\NOT" has a single subtree as its next operand.

DNF Algorithm:

The �rst step in the DNF algorithm is to gen-

erate a tree that has the negation operator as a

root for only leaf nodes. This operation is per-

formed by the procedure \Negation Bubbling",

which bubble all negations up to the leaf nodes.

It traverse a given binary tree to generate a bub-

bled binary tree. Let ti � T , where T are the

set of all binary tree expressions. And let Njti
be the set of nonterminal nodes (root or internal

node) 2 ti where j=1..3, corresponding to the

operators \NOT", \AND" and \OR", respec-

tively, nti be the set of all terminal nodes (vari-

able names) 2 ti, and tni 2 fnti ; Njtig. The

following is the algorithm for Negation Bub-

bling:

Traverse(T):T

begin

8 ti 2 T do

if tni 2 nti

then ti nti

else if tni 2 Njti
then if i = 1 then

ti Bubble(tni)

ti:left traverse (tni.left)

ti:right traverse(tni.right);

end.

Bubble(ti) : ti
begin

if tni:next 2 nti then ti tni

if tni:next 2 Njti then

case j of

1 : ti tnti :next:next

2 :ti creat-or(Negaye(tnti.next.left),Negate(

tnti :next:right))

3 : ti creat-and(Negate(tnti.next.left),Negate(

tnti :next:right)

Traverse(tnti);

end.

The idea of Negation Bubbling algorithm is to

recursively convert each negated expression (sub-

tree) into its equivalent normal form, by apply-

ing DeMorgan's laws (e.g., NOT(A AND B) =

NOT (A) OR NOT (B)).

The second step in DNF procedure is to gen-

erate the sum of product of the given bubbled

tree as follows:

Traverse SOP(ti) : ti
begin

if tni 2 Njti then

Traverse SOP(tni:left)

Traverse SOP(tni:right)

if tni 2 Njti then

case j of

1 : ti Negate(pop(ni))

2 : ti Product(po(ni); pop(nj))

3 : ti Concat(po(ni); pop(nj))

push(ti);

end.

0.1

1

10

100

1000

20 40 60 80 100 120 140 160 180 200

 T
im

e
(s

ec
)

No. of Nodes/Transistors

NODES

Transistors

Figure 2: Number of transistors & nodes versus

the execution time

A stack structure has been used with the two

operations push and pop. Processed subtrees

are pushed into the stack one at a time, then

poped pack for further operations. \Product",

is a procedure to compute the logic product of

two subtrees. While, \Concat", is a routine

to combine subtrees with the same operation

(AND and OR only). The resulted DNF tree is

k-ary tree with disjunctive, (OR) operator root,

where k is the number of created conjunctive ex-

pressions. The root is linked to k subtrees each

with a conjunctive, (AND) operator root. Each

of these roots has a subtree of leaf nodes (simple

terminal). DNF tree leafs represent terminal

nodes in the circuit design, each of which has a

designated pointer. Node and subtree pointers

are generated with no repetition. This unique

representation has been carried on through all

the procedures to minimize storage size and fa-

cilitate variable referencing.

3 Conclusion

The presented formal veri�cation system is suc-

cessfully applied to a set of arithmetic circuits

(full adders, subtracter, comparator, and multi-

pliers, with di�erent input array sizes). The re-

sults for both adder and subtracter circuits were

isomorphic (exact matching of abstractions).

On the other hand, satis�ability was the result

for both multiplier and comparator (i.e., the im-

plementation was contained or implied in the

speci�cation). That is, because The symbolic

solver does not necessarily generate a match-

ing expression for the speci�cation, and, also,

the layout synthesiser performs simpli�cation

and optimization on circuit layout. It is a safe

approach not to simplify symbolic speci�cation

because it might result in a false rejection of a

correct design. System Performance is shown in

Fig. 2. We claim that such performance can be

improved, because, constructing the logic from

the layout is totally independent of parsing de-

sign speci�cation, therefore the two processes

can be executed in parallel to generate the de-

sign logic.

References:

[1] M. Fujita, Y. Matsunaga, and T. Kakuda.

\Automatic and Semiautomatic veri�cation of

switch-level circuits with temporal logic and bi-

nary decision diagrams," In ICCAD, pp. 38-41,

1990.

[2] K. L. McMillan, \Symbolic Model Checking,"

Kluwer Academic Publishers, Boston, 1993.

[3] Fredrick J. Hill and Gerard R. Peterson, \In-

troduction to Switching Theory and Logical De-

sign," John Wiley & sons, New York, 1974.

[4] Fatma A. El-Licy, and Prof. Hoda S. Abdel-

Aty-Zohdy, \Veri�cation System Interface for

VLSI Combinational Circuits," 41st IEEE Mid-

west Symposium on Circuits and Systems, pp.

408-411, Aug 1998.

