A Distri buted Solution to Synchronous Multipart y Interaction

RAFAEL CORCHUELO, DAVID RUIZ, MIGUEL TORO, JOSE L. ARJONA, AND JOSE M. PRIETO
Departamert de Lenguajesy Sistema Informaticos
Facultad de Informaticay Estalistica Universidal de Sevilla
Avenidade laReinaMercedes s/n 41.012 Sevilla
ESPANA — SPAIN

Abstact Multiparty interactiors are the key to descrile problerns where three or more processg ned to col-
laborae simultaneousl in orde to solve a problem ard this pape aims to show the way we have implemented
this mechanim in a netwok compute. The main featue of our solution istha it is not bourd up with the un-
derlying network so it ishighly portable We also repot sonme experimentéresuls tha show tha our prototype

perforns quite well on low cog computers.

Key words Multiparty interaction netwok computersfairness IP, SR. CSCC'99 Proceedings, Pages:3511-3516

1 Introduction

When describiry the behaviour of a systen implies
that more than two processeneae to collaborae sim-
ultaneoust in orda to solve a problem classical
inter—proces interaction primitives sud as rendez—
vous or remotk procedue calls are nat adequat be-
cau® the solution is usuall too sophisticatedThese
primitives are examples of the classica client/sever
modd tha emphasisgetwo entities exchangig mes-
sagesand they are clearly insuficient in thes situ-
ations becaus we neal to decompos naturd multi-
parly interactiors into severd low—level interactions
tha turn our solutiors into tricky descriptions.

This motivated severd researcherto introduce
multiparty interaction construcs into language for
the descriptim of distributed reacive systems.
Scripts Radde or UNITY are goad examples but
IP (Interactirg Processés[7] stand out becaus it
is intendel to have a dud role: on the one hand it
is intende to be adistributed systen specification
langua@ equippe with sourd semantis tha turn it
into alanguag@ amenal® to formd reasoningon the
othe hand itisintendel to be an assemblelanguage
supportirg more sophisticatd high—level specifica-
tion language such as LOTOS or ESTELLE IP is
equippel with arich se of statementsbeing the most
importart the interaction statemerg tha are usal to
descrile coordination amorg a se of processes.

Severd algorithns tha implemen the multiparty
interaction statemerd |P incorporats have been de-
scribal in the literature [4, 8, 9], but they are closely
relatal to the underlyirg netwok architectue and
they canna be easiyy adapte to othe networks This
is problematica becaus it makes them difficult to
port, and incorporatirg the notion of fairnes into
them is usually quite tricky. Fairnes is an important
propery tha ensurs tha every interaction is given
achane to be executed In general severd interac-
tions may be read/ for executin at the sane time,
but IP semantis states that only one can be fired at
ead synchronisatio point Thus when aconflict oc-
curs one interaction is executea to the detrimen of
the rest Fairnes enforces tha no interaction is neg-
lectad forever, but incorporatiry it into the algorithms
we have cited is rathe difficult. As aresult few IP
implementation are available The one describd in
[1] is the state—of-the—arcompile, but it is not in
wide sprea use becaus it runs on atranspute and it
isonly intendel for terminatirg programs.

This pape aims to descrile a solution we have
implementd to this interaction mechanim on a net-
work compute, which isacollection of workstations
who< links can be logically rearrangd at runtime.
This allows us for eay distribution, it is efficient
enough ard makes incorporation of fairnes ex-

tremely easy while preserving portability. We have dummy statement denoted by the key woidp.
organised it as follows: section 2 recalls the notionGuards are of the fornB&a[z:=e], where B is a
of multiparty interaction by means of well-known boolean expression and the rest is an usual interaction
problems; section 3 describes our implementationstatement. A guard is said to be passable, i.e., their
the algorithm we have implemented to deal with fair corresponding statements can be executed, as long as
selection of conflicting interactions, and we also re- B holds andz is enabled.
port some experimental results that show that our al-
gorithms perform well enough; section 4 glances at 1 Synchronisation
other authors’ work and compares it with ours; fi- We illustrate synchronisation by means of the din-
nally, section 5 shows our conclusions and the working philosophers problem, which is a classic multi-
we are planning on doing. process synchronisation problem that consists of five
philosophers sitting at a table who do nothing but

. . . think and eat. There is a single fork between each
2 Multiparty interactions philosopher, and they need to pick both forks up in
In this section, we introduce multiparty interaction in order to eat. This problem is the core of a large class
the context of IP. We assume that the reader is faof problems where a process (the philosopher) needs
miliar with this language, so we only recall the main to acquire a set of resources (the forks) in mutual ex-
concepts. Ifitis not the case, please consult [7]. clusion.

In IP, systems are understood as collections of The obvious solution to this problem, using two—
co—operating sequential processes whose relatiorparty interactions, consists of picking up forks in se-
ships are based on multiparty interactions. An inter-quence. Nevertheless, a problem arises if each philo-
action statement is a statement of the farfm=e|, sopher grabs the fork on his/her right, and then waits
whereq is referred to as the name of the interaction for the fork on his/her left to be released. In this
andz=e is a sequence of parallel assignments usu<case, a deadlock has occurred, and all philosophers
ally referred to as the communication part. A processwill starve. If we used multiparty interactions, each
is said to be a participant of interactianif it has philosopher would pick up his/her two forks at the
an interaction statement involvingin its body, and same time so that no deadlock may arise. Figure 1
when a process has arrived at a point where executinghows a solution to this problem in IP. The philosoph-
such interaction is one of its possible continuationsers are represented by proces$¥glosopher;, and
we say that it is readying it. When an interaction is the forks byFork; (i = 1,2,...,n). Philosopher;
readied by all of its participants, we say that it is en- eternally tries to get his/hers associated forks by in-
abled, and when several interactions are enabled aeracting in the three—party interactiget_f orks; to-
the same time we say that a conflict has occurred. gether withFork; and Fork;_; (we assume that in-

IP also provides guarded non—deterministic dex arithmetic is cyclic,i.el—1 = nandn+1 = 1).
choice statements of the forfif’_, G; — S;], guard- Thus, acquiring a resource is specified as synchron-
ed non—deterministic loops[[|;_;G; — S;] and a ising with the corresponding processes in an interac-

DIN_PHIL :: [||, Philosopher|| ||%_, Fork;], where Philosopher,

Philosopher:: Fork, Fork, @
*[get_fork;[] — eat, releasefork;[]; think] ‘\Tf ‘\Tf
Fork; ::

* [get_for

ky get_fork,
getfork;[] — releasefork;[] AN\
i i i i

getfork;;[] — releasefork; [l Fork
] Philosopher, : Philosopher,

Figure 1: A solution to the dining philosophers problem in IP.

P,
weight,
leader,

weight,
leader,
weight, | Temporary global

LEADER :: [||™, P;], where
N [||zfl ?]’ ~— - leader, combined state
P; D . -
{w;: natural; leader boolear} § ﬁ?ff:“
w; = aweight .
= - . . . Consult
Electlleader:= w; = | max {w;})]; Ubdate . Global State

[leades — execute algorithnj.

" ".Local States <
weight | s
leader

<4 ‘:: (weight, = max {weight,, ..., weight }
N——" —

Figure 2: A solution to the leader election problem.

A Manager

Readies(t)

EXAMPLE :: [P || Q], where s

Enabled(t)

Pi e Execute(t) Exceute(t) Execute(t)
{ x: natural} _ -
*[AXx:=y] — skip [] B[x :=y] — skip] Seheduler

Execute(f) Enabled(t) Execute(h)

Q - Execute(f)
{y: natural}

*[Aly :=x] — skip [] Bly := x] — skip]

Readies(t) Readies(t)

B Manager

Pre-synchronisation

Write(x) Write(y) Finished() Finished() Finished()

Read(yy Read(x) Continte() Contimie) coninue()
Central
Scheduler Central
Scheduler
Continue()
B Manager

Communication Post-synchronisation

Figure 3: A global picture of our solution.

tion. After Philosopher; has picked his/her forks w; = max {w;}.
up, he or she eats, releases the forks, spends some Théjﬁgual solution to this problem, using two—

more time thinking, and the whole process is repeated,ay interactions, consists of arranging the processes

again. in a unidirectional ring where only pairs of neighbor-
ing processes can exchange their weights and calcu-
2.2 Communication late a local maximum. These maximums are propag-
We illustrate the notion of multiparty communication ated in the ring so that after — 1 rounds the global
by means of the leader election problem, which ismaximum has been calculated. The problem here is
a classic multi-process communication problem thatthat synchronizing the whole set of processes so that
consists of a number of processes that are able to exeach one passes its local maximum at the right mo-
ecute an algorithm, but there is no a priori candidatement is quite tricky. If we used multiparty commu-
to run it. Therefore, an election under the processesication, all of the processes would synchronise and
needs to be held. The criterion processes use to sdrave access to the weights other processes have sim-
lect a leader is quite simple: each of them is sup-ultaneously. An immediate solution to this problem
posed to have a different natural weightin the sys- is shown in figure 2. Here, the multiparty interac-
tem, and the leader is the proceBssatisfying that tion Elect synchronises all of the processes, allow-

ing them to exchange information and decide whichtions or not. When a manager detects enablement
one has to be assigned to the role of leader. Whemr disablement, it sends its result to the central inter-
several processes synchronise and interact, a tempoaction scheduler, which, in turn, selects one enabled
ary global combined state is formed by combining theinteraction fairly. In order to detail how our solution
local states of the processes participating in that interworks we use the program and the trace we show in
action so that they can read information in the state offigure 3. It consists of two processé&sand () that
other participants. This way, each process synchronean exchange the values of their local variahlesd
ising on Elect can read the weights the other pro- y either by participating in interactioA or B, which
cesses have, compute the maximum in parallel, comare permanently in conflict.
pare it to its own weight and store the result of this Processes do local computations and, when they
comparison in its local variableader;. After inter- arrive at a point where they are readying an inter-
action, the one that finds itself having the maximumaction, they send messages to the interaction man-
weight executes the appropriate algorithm. agers in order to inform them whether they are ready-
ing the interaction they manage or not. These mes-
o . sages are of the forrReadies(b), beingb a boolean
3 Implementlng Interactions value. Upon reception of these messages, the interac-
The bulk of implementing multiparty interactions tion managers can detect enablement or disablement
consists of the so-called pre—synchronisation, comvery easily because they only need to see if all of the
munication and post-synchronisation problems. Therocesses that are connected to it are readying the in-
former, consists of detecting which interactions areteraction they manage or not. Once they have this in-
enabled and of resolving conflicts. The communica-formation, they send it to the interaction scheduler by
tion problem consists of transmitting the piece of in- means of messages of the fofmabled(b), beingb
formation each process needs so that network load ia boolean value. It then selects one of the enabled
minimum. Finally, the post—synchronisation problem interactions fairly and sends messages of the form
consists of stopping all of the processes participatingSelected(b) to the interaction managers to let them
in an interaction until the others have completed theirknow whether their associated interaction has been
communication parts. selected or not. In any case, the interaction managers
This section shows the solution to these problemspass these messages to the processes that are con-
we have implementédand also reports some experi- nected to it, thus completing the pre—synchonisation
mental results that show that our implementation perstage.

forms quite well in low cost computers. After synchronisation, communication takes
place. Those processes that have got a message of
3.1 Our solution the from Selected(true) from an interaction man-

We have implemented a distributed solution to mul-2der know that they can execute the corresponding
tiparty interactions where each IP process runs orinteraction, so they start communication by send-
a different virtual machine, and there is a set ofiNg it the data they are responsible for by means of
compiler—generated processes that deal with thénessages of the foririte(v). After all the data
problems we have just mentioned. Our solution assolas been collected, the interaction manager sends
ciates a process called manager with each interactiorfach participating process the piece of information it
and there is also a central scheduler. Each managdle€ds by means of messages of the fdtaud(v).
is responsible for detecting enablement or disable/n our first prototype, communication was more ex-
ment of its corresponding interaction, and the centralP€nsive because we used two messages to read data
scheduler deals with fair selection of interactions. ~ from the interaction manager: a message of the form
Each IP process is logically connected to the Request(x) to to inform it we were interested in vari-
managers of the interactions it participates in, and@ble z, and a subsequent message to send its value
they send them messages in order to inform thenfrom the manager to the corresponding process. In
whether they are readying their associated interacOUr latest version, the manager knows what piece of

Due to space limitations, we only present a detailed description but not a formalisation. The reader who is interested can contact
the authors in order to get a copy of our algorithm and its formalisation.

information each process needs and sends it withoulPlease, do contact the authors if you are interested in
any need for &Request message. this theoretical result.

According to IP semantics, no participant in an
interaction can continue until they all have completed3 .3 Experimental results
their communication parts. We have implemented thewe have implemented an IP compiler, and the tar-
simplest solution to enforce this: we use a commitget language we selected was SR (Synchronising Re-
protocol in which every participant sends a message&ources) [2], a well-known, widely—available lan-
indicating itis finished to the corresponding manager,guage for writing concurrent programs. Our proto-
which waits until the last participant is done and in- type runs on a network computer composed of sev-
forms then the central scheduler. It then sends meseral computers running Solaris, AIX and Linux, the
sages to let the processes know the interaction is finplatforms we have in our laboratories.

ished and they can continue. In this section, we report the results of some em-
pirical tests we have carried out in order to find out
3.2 Fairness how our implementation performs. The tests were

Fairness is an important concept that ensures thdtn on a set of 10 low cost IBM 320H computers run-

every element of a non—deterministic program that ising at 25 MHz. They are equipped with 16 Mb of
enabled sufficiently often, will eventually progress, Memory, AIX3.2.5, SR 2.3.1, GNU C 2.4.7, and they
i.e., none of them is neglected forever. In the con-&re interconnected by means of a 10 Mbps Ethernet

text of IP, fair selection of enabled interactions is the LAN- Our test consisted of executing the following
only way to ensure liveliness, termination or even-Program.
_tual response to.an_event. Nptice, fpr example, thatrEST [, P;], where
in the program in figure 1, interactiongt_fork; p. - =
andget_fork;, 1 are always in conflict when they are
both enabled, but only one can be executed. The only
way to guarantee that each interaction that is enabled
“sufficiently often” will eventually be selected for ex- It consist ofn processes that just synchronise on
ecution consists of assuming that the underlying con-nt 500 times, and do some work that takes them 1
flict resolution mechanism is fair. According to the second. We executed it 15 times in a single machine
meaning of “sufficiently often” we have the follow- giving n values from 2 up to 10, i.e., we increased the
ing levels of fairness: weak, if every element continu- number of participants idnt¢ from 2 up to 10. We
ously enabled is selected infinitely often, and strong,then executed this test assigning a process to each of
if every element that is infinitely often enabled is in- our machines, thus composing a network computer.
finitely often selected. We have also carried out a regression analysis
We have implemented strong fairness by associat a 95% confidence level whose results are repor-
ating a priority variablep, with each interactioru, ted in the table below. It shows that the time our al-
as suggested in [6]. These variables are initially as-gorithms take increases about 726 seconds each time
signed random values, and the central scheduler se new participant is added in the case of a single com-
lects among the set of conflicting interactions thatputer (['s¢), whereas the rise is only 423 seconds
whose counter has the minimum value (maximumin a network computerZ(vc). The number of in-
priority). If more than one variable is minimum over teractions per minute also decreases as the number
the set of priority variables, one of them is uniformly of participants increases, but our network computer
selected. Upon termination of the selected interac-executes 9.42 more interactions per minute than our
tion, its associated priority variable is reset to an ar-single computer. This approximation is quite accur-
bitrary random value while the counters associatedate as the coefficient of determinati®3 shows. This
with those interactions which were neglected are de-coefficient ranges in value from 0 to 1, and the higher
creased by 1. This algorithm has been proved correcits value is, the more accurate the approximation is.
in [6], but, unfortunately, we have proved that it loses In general, these results show that our distrib-
completeness if counters are finite, i.e., there are faiuted implementation performs quite well in low cost
executions that cannot be generated by this algorithmworkstations.

;o
{ count: natural := Q¢
*[count < 500 — Int[]; count++; work 1 sec]

[Magnitude | Prediction | R*] 5 Conclusions and future work

Time Tsc =725.93n 4+ 718.78 | 0.99 In this paper, we have presented a solution to the
Tnc = 423.24n + 140.88 | 0.83 problem of distributed multiparty interactions. We
Int./Min. Isc = 20.30e 019" 0.95 have also reported some experimental results that
Icn = 43.69¢79-20n 0.85 show it is effective enough to be used in practical ap-
plications. We also think that the solution we have
4 Related work presented is attractive because it is not bound up

The first algorithms for distributed co-ordination with Fhe underlylng net.work, gnd mcprporatmg an
algorithm for fair selection of interactions has been

were produced in the context of CSP, and were re-_~ .
straightforward.

stricted to two—party interactions. Nevertheless, more At present, we are working on introducing multi-

recently, the problem of multiparty interactions has . S

become of great interest. Chandy and Misra [5] pgrty Interaction in thg conte_zxt pf CORBA. We agree

developed two algorithms that became the basis O¥VIth the au.thors of IP in that it will not _replace current
programming languages, but we think that the no-

Bagrodia’s algorithm [4]. In this algorithm, each in- . .) J o .
i . J o tion of multiparty interaction is quite important and it
teraction has an associated manager, which is similar :
would be desirable for languages such as C++ or Java

to our distributed solution because it is sent message§O support it. This way, we are implementing multi-

when processes are ready to interact and detects egarty interactions using CORBA, which is a middle-

.) : .) .ware that is very successful in the industrial world.
interaction, a mutual exclusion algorithm is run in

order to prevent two different interactions from be-

ing executed at the same time. The problem here iReferences

that Bagrodia’s algorithm assumes that the underly- _ .) _)

. ication network has onlv those links con- [1] A. Adir. Compiling Programs with Multiparty Interactions
ing C_Ommun'ca - y)) and TeamsPhD thesis, Technion, 1994.

necting the processes that participate in an interac- .

. . . . 2] G.E. Andrews and R.A. OlsonThe SR Programming Lan-
tion. This is problematical because it is not always

)) guage The Benjamin—-Cummings Publishing Company,
possible to place processes at adequate nodes in areal 1993,

network.) [3] P.C. Attie, I.R. Forman, and E. Levy. On fairness as an ab-

Several more algorithms have been developed by straction for the design of distributed systemsPtceeding
Garg [8] or Joung and Smolka [9] for different net- of the 10th International Conference on Distributed Com-
work architectures. In general, these papers also fo- ~Puting Systemsaris, France, June 1990. |EEE.
cus on architectural aspects we are not interested irt4] R. Bagrodia. Process synchronization: Design and perform-
Instead of making our solution dependent on the un- @nce evaluation of distributed algorithm$EEE Transac-

. 9 . P tions on Software Engineering.5(9):1053-1065, Septem-
derlying network, we have decided to rely on SR . 1950
for efgflent ((1j|§tr|but|on. 'ThIS makefs .Our alg.omhrr]ns [5] K.M. Chandy and J. Misra.Parallel Program Design: A
portable, and incorporating st_rong alrngss Inj[O'[e_m Foundation Addison-Wesley, 1988.
has been very easy, whereas incorporating this notio
in other well-known algorithms is rather difficult.)
7] N. Francez and |. Formaninteracting processes: A mul-

At present,_ the research I_S centred on mplementmd tiparty approach to coordinated distributed programming
stronger fairness assumptions than those provided by aqdison—wesley, 1996.
the underlying network [3]. . . [8] VK. Garg and S. Ajmani. An efficient algorithm for multi—

As far as we know, IP has been implemented in" * process shared events.Roceedings of the'? Symposium
the laboratory [1], and runs on a transputer—based on Parallel and Distributed Computing 990.
computer. Unfortunately, the implementation is only 9] v.J. Joung and S.A. Smolka. A completely distributed
intended for terminating IP programs. Ours can and message-efficient implementation of synchronous mul-
be run in virtually any network computer composed “P“:j‘fess C?mrznug'gal“o”- In Pe?'ghupg Yew, ed'f;)m' |
of inexpensive workstations and personal computers, ~e€ngs of the 19 International Conference on Paral-

. . L. lel Processing. Volume 3: Algorithms and Architectures

Furthermore, it can deal with both terminating and pages 311-318, Urbana-Champaign, lllinois, August 1990.

non—-terminating programs. Pennsylvania State University Press.

r[16] N. Francez.Fairness Springer—Verlag, 1986.

