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Abstract: - The observability problem for a polynomial system possessing a polynomial first integral is
examined. The property of distinguishability of level sets of a first integral is introduced. It is demonstrated
that in the generic situation the polynomial system has this property everywhere in the state space excepting,
may be, some subset of the equilibria set. Further, the property of strong distinguishability of level sets of a
first integral is also introduced and one sufficient condition is given. It is discussed how to use the latter
property together with the parametrized set of Luenberger-type observers for state estimation. Finally, we
concern observability analysis on a level set and give some necessary and sufficient conditions.
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1 Introduction
Nonlinear systems possessing first integrals form an
important class of systems due to applications in
mechanics, physics, chemistry etc. However, the
topic of observability for this class of systems is a
weakly elaborated problem in control theory. One
related reference is [1].
The main goal of this paper is to describe
observability conditions for nonlinear systems with
first integrals. We consider a polynomial system
dx/dt=f(x),     x∈Rn (1)
y=h(x),          y∈R1

where h is a polynomial observation law. Let ϕ(x,t)
be the solution of f with the initial condition
ϕ(x,0)=x. Suppose that the system (1) has a
polynomial first integral ρ≠0;     ρ:Rn→R1.

Definition 1. Two states x1;x2 are called
distinguishable if there is an instant t≥0 such that
h(ϕ(x1,t))≠h(ϕ(x2,t)). Let M be some invariant set of
the phase flow of the system (1). The system (1) is
called observable on the invariant set M if any pair
of distinct states from M is distinguishable.

Definition 2. The system (1) has distinguishable
level sets of the first integral ρ with respect to the
invariant set M if for any a1;a2∈ρ(M),  a1≠a2, we
have: any states xs∈ρ -1(as)∩M,  s=1,2, are
distinguishable .
Based on algebraic ideas taken from [2] we establish
conditions under which the system (1) has
distinguishable level sets of the first integral ρ. Then

we concern the theoretical procedure for obtaining
estimates of states based on another concept of
distinguishable level sets, normal forms and
Luenberger-type observers.
Finally, we concern observability analysis on a level
set and give some necessary and sufficient
conditions.

2 Some preliminaries
Let Lfh be a Lie derivative of the function h along
the vector field f and let Lf

sh=Lf(Lf
s-1h), s≥2;

Lf
0h:=h.

We introduce the mapping
Hm(x)=(h(x),Lfh(x),…,Lf

m-1h(x)). By Alg(f,h) we
denote the algebra of polynomials of n real variables
x1,…,xn, which is formed with help of {Lf

sh;
s=0,1,…} We define a linear vector space V(ρ;n,d)
of polynomial vector fields f corresponding to (1)
such that 1) ρ is their common first integral; 2) the
degree degfs≤ d; s=1,2,…,n. Also, we define a linear
vector space OL(n,l) of scalar polynomial
observations laws h:Rn→R1,   degh≤ l.

3 Main results
Below we describe conditions under which states of
distinct level sets of ρ generates distinct outputs.
Then we reduce the state estimation problem posed
for states of Rn to the state estimation problem for
states of some level set.
We establish



Theorem 1. There exists an open, dense and
semialgebraic set W⊂V(ρ;n,d)×OL(n,l) such that if
(f,h)∈W then
1) the set f -1(0) is finite and there is a subset O⊂ f -

1(0) such that the system (1) has distinguishable
level sets of the first integral ρ with respect to
the set M=Rn\O.

2) Moreover, one can find real polynomials of n+1
variables p and q for which
ρ(x)=p(Hn+1(x))/q(Hn+1(x)), provided
q(Hn+1(x))≠0.

Sketch of the proof. Let ρ∉Alg(f,h) otherwise the
assertion is trivially true with O=∅. Assume that Lf

n-

1h is a non-constant polynomial. By use of the
Perron theorem on algebraic dependence, [3], to
polynomials Lf

sh; s = 0,1,…, n–1; ρ; we deduce that
there is a nontrivial polynomial Φ of n + 1 real
variables for which Φ(Hn(x), ρ(x))≡0. We can
rewrite this identity in the form
Σd

s=0 [ρ(x)]sas0(Hn(x)) ≡ 0 (2)
for some integer d≥1 and some real polynomials as0

; s = 0,…, d. Now we apply the Lie derivative Lf to
the identity (2). It is easy to see that we come to
another polynomial identity
Σd

s=0 [ρ(x)]sas1(Hn+1(x)) ≡ 0 (3)
Then we use the following lemma, [6].

Lemma 2. Suppose that Lf
n+1h is a non-constant

polynomial. Then there are non-constant
polynomials α; βj; j = 1, 2,…, all of n + 1 real
variables, such that the following sequence of
polynomial identities
Lf

n+jh(x)[α(Hn+1(x))] j+βj(Hn+1(x))  (4)
 j=1,2,…
is valid.
Now we apply the Lie derivative Lf to (3). As a
result, we come to the polynomial identity
Σd

s=0 [ρ(x)]sbs1(Hn+2(x)) ≡ 0             (5)
for some polynomials bs1,s = 0, 1,…, d, of n + 2
variables. Then we take the identity (5). We
substitute there instead of Lf

n+1h its expression
obtained from (4) with j = 1. As a result, we come to
the polynomial identity
Σd

s=0 [ρ(x)]sas2(Hn+1(x)) ≡ 0
where as2, s = 0,…, d, are some real polynomials of
n + 1 variables. We repeat this argument for j = 2,
3,…, and finally, we have the following system
Σd

s=0 [ρ(x)]sasi(Hn+1(x)) ≡ 0,   i=1,…,d-1 (6)
The system (6) is linear with respect to [ρ(x)]s,  s =
1,…,d-1. All   asi;   s = 0,…, d; i = 1,…, d-1, are
polynomials of n + 1 variables. Its determinant D0 is
a polynomial depended on the vector of coefficients
(coef(f), coef(h)) of the pair (f, h) and x as well.

We substitute into equation D0(coef(f), coef(h), x) =
0 instead of x the solution ϕ(x, t) and calculate (n -
1) time derivatives at t = 0. As a result, we obtain
the polynomial system of equations Ds(coef(f),
coef(h), x) = 0, s = 0, 1,…, n-1.
Now by arguments of the proof of Theorem 3, [2],
we come to the first desirable assertion. The second
assertion is followed from the solution of the system
(6) with respect to ρ.
Similarly we come to the following assertion:

Theorem 1a. For any polynomial pair (f,h) such that
Lf

n-1h is a non-constant polynomial there is an open
and dense invariant set M⊂Rn such that the
restriction (f,h)|M has distinguishable level sets on
M.
In practice it is more convenient to apply one more
rough concept of distinguishable level sets than the
concept contained in Definition 2.
Below up to the end of Section 3 we consider that
f1,…,fn,h,ρ are sufficiently smooth.

Definition 3. The system (1) has strongly
distinguishable level sets of the first integral ρ with
respect to the invariant set M if for any a1;a2∈ρ(M),
a1≠a2, and any two phase curves ℑs⊂ ρ -1(as),
s=1,2, we have :  h(ℑ1)≠ h(ℑ2).
Now we formulate one sufficient condition for
strongly distinguishability of level sets of the first
integral.
Let h(x1,…,xn)=(x1,…,xp)

T, 0p:=(0,…,0)∈Rp and we
define the following sets:
1)  L(x)=Cl∪πϕ(x,t); here

          t

πϕ(x,t)=( ϕ1(x,t),…,ϕp(x,t));
2) for the invariant set M⊂Rn we introduce the set

K(a,M)={L(x) | x∈M ∩ ρ -1(a)}.

Proposition 1. Assume that following conditions are
valid:
1) the first integral

ρ(x1,…,xn)=ρ1(x1,…,xp)+ρ2(xp+1,…,xn);
2) the function ρ2(xp+1,…,xn) attains a global, may

be non-strict, extremum on M∩0p×Rn-p ( we
denote its value by α );

3) the closure of any phase curve in M intersects
the set

        ∪      {x∈Rn | xi=xi
*;  i=p+1,…,n}.

(xp+1
*,…,xn

*)∈ρ2
-1(α)

Then (1) has strongly distinguishable level sets of
the first integral ρ with respect to M.
The proof consists in the easy analysis of the set



K(a,M) and is omitted here. We note also that
Proposition 1 is a generalization of one assertion in
[1] respecting to the Euler equation of the rigid body
dynamics with the linear observation of one
coordinate.
In practice, we can determine approximately the
level set by the following operations:
1) Observe time functions ϕ1(x,t),…,ϕp(x,t) on

some time interval [0,T]; T≤∝;
2) Calculate a global extremum

δ:=ρ1(ϕ1(x,t*),…,(ϕp(x,t*)) of  the function
Ψ(t):=ρ1(ϕ1(x,t),…, ϕp(x,t))  at some instant
t*∈[0,T];

3) Calculate the parameter a of the level set by the
formula a:=δ+α .

Here we do not discuss the situation when the global
extremum of Ψ(t) is attained outside of the
observation interval [0,T].
Example 1. Let
(dx1/dt,dx2/dt)T=(x2

2,-x1x2)
T,

h(x1,x2)=x1;   M={ x2≥ 0 };ρ=x1
2+x2

2.
This system is satisfied to conditions of Proposition
1.

4 One remark on state estimation
with help of observers

One can see from Sections 3 that the concept of
strongly distinguishable level sets is more adapted
for the solution of state estimation problem because
we can obtain information about a level set directly
from the outputs.
Assume that we find the parameter a of the level set
corresponding to some output. Let x*∈M. By (A,C)
we denote the dual Brunovsky canonical form, with
A be the (n×n)-matrix; C be the (2×n)-matrix.
Also, let
dz/dt=Az+G(Y) (7)
Y=Cz
be the observer form; here G is some smooth vector
function.
It is well known, see e.g.[5], that the observer
synthesis especially easy in case when the system is
given in the observer form. We show briefly how to
obtain state estimates with help of observers.
Assume that the pair (f;h,ρ) in some neighborhood
of x* is satisfied to some of sufficient conditions of
solvability of the observer error linearization
problem, see e.g. the paper [6]. In this case we can
consider the pair (7) locally around zero instead of
the pair (1) locally around x*. Now in order to obtain
a state estimate we can use the 1-parametric set of
Luenberger-type observers

dw/dt=A0w+G(y(t),a)
parametrized by the level set parameter a which is
known for us.

5 On observability of a polynomial
system restricted on a level set

Assume that the system (1) has distinguishable level
sets of the first integral ρ. Then we can reduce
observability analysis for the system (1) to
observability analysis for the system (1) restricted
on the level set corresponding to the output given.
Note here that since the level set
ρ -1(a) is an algebraic set we come to observability
analysis of the system (1) restricted on the finite
number of algebraic sets Mi being analytic
manifolds of dimension s<n; here all Mi⊂ρ -1(a). It
follows from the Lojasiewicz theorem on the
stratification of semialgebraic sets, [8].
As a special case we have the situation when ρ is
linear with respect to some variable, e. g. to xn. We
obtain a 1-parametric set of polynomial systems
dx(n-1)/dt=F(x(n-1);a), (8)
y=g(x(n-1);a),
instead of (1) ; here x(n-1)= (x1,…,xn-1)∈Rn. So, since
the parameter a is known we come to the
observability problem for (8).
Now suppose that we are interested in the
distinguishability condition of states taken from the
same level set. We remark that the system (1)
restricted on some level set Q is observable if and
only if the mapping (ρ,h;Lf

sh,s=1,2,…) is injective.
We can apply Theorem 1, [9], to the complexified
system dxs/dt=f(xs); s=1,2;
(x1,x2)∈Q×Q∩{(x1,x2) | h(x1)=h(x2)}.
Since the cited theorem is local we can apply its
assertion for the dimension 2(n-1) and as a result we
come to :

Proposition 2. Let (f,h)∈V(ρ;n,d)×OL(n,l) and
a=d r-1lr(l+d)r, with r=22n-4.
Then we have that the system (1) is observable on
any level set Q of the first integral ρ if and only if
x→(ρ(x),Ha(x)) is an injective mapping.

6 Concluding remark
One can generalize Theorem 1 for the case of
multiinput-multioutput polynomial systems
dx/dt=f(x,u);  y=h(x) with many first integrals
following the ideas of [2,7]. In this case by a first
integral ρ we mean the polynomial vector-function
ρ=(ρ1,…,ρk) such that Lfρs(x)≡0 for s=1,…,k and



any admissible input u. Proposition 1 and 2 can be
also generalized for the case of multioutput systems
with many first integrals.
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