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Abstract: - In this paper we propose a framework for developing globally convergent batch training
algorithms with adaptive learning rate. The proposed framework provides conditions under which global
convergence is guaranteed for any training algorithm with adaptive learning rate. To this end, the learning
rate is appropriately tuned along the given descent direction. Providing conditions regarding the search
direction and the corresponding stepsize length this framework can also guarantee global convergence for
any training algorithm with a di�erent learning rate for each weight. In cases where the direction-related
condition is not ful�lled the search direction is properly corrected and the stepsize length along the new
search direction is adapted.
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1 Introduction

The goal of neural network training is to iteratively

update the network weights to minimize the learn-

ing error. The rapid computation of such a global

minimum is a rather di�cult task since, in gen-

eral, the number of network weights is large and

the corresponding nonconvex error function pos-

sesses multitudes of local minima and has broad


at regions adjoined with narrow steep ones.

To simplify the formulation of the equations

throughout the paper we use a uni�ed notation for

the weights. Thus, for a Feedforward Neural Net-

work (FNN) with a total of n weights, IRn is the n{

dimensional real space of column weight vectors w

with components w1; w2; : : : ; wn and w
� is the opti-

mal weight vector with components w�
1
; w�

2
; : : : ; w�n;

E is the batch error measure de�ned as the sum-

of-squared-di�erences error function over the entire

training set; @iE(w) denotes the partial derivative

of E(w) with respect to the ith variable wi; rE(w)

de�nes the gradient vector of the sum-of-squared-

di�erences error function E at w while H = [Hij ]

de�nes the Hessian r2E(w) of E at w.

The batch training of an FNN is consistent with

the theory of unconstrained optimization, since it

uses information from all the training set, i.e. the

true gradient, and can be viewed as the minimiza-

tion of the error function E. This minimization

corresponds to updating the weights by epoch and,

to be successful, it requires a sequence of weight

vectors fwkg1k=0, where k indicates epochs, which

converges to the point w� that minimizes E.

The widely used batch Back{Propagation (BP)

[20] is a �rst-order training algorithm, which mini-

mizes the error function using the steepest descent

method [7]:

wk+1 = wk
� �rE(wk); (1)

where the gradient vector is usually computed by

the back{propagation of the error through the lay-

ers of the FNN (see [20]) and � is a constant heuris-

tically chosen learning rate. Appropriate learning

rates help to avoid convergence to a saddle point

or a maximum. In practice, a small constant learn-

ing rate is chosen (0 < � < 1) in order to secure

the convergence of the BP algorithm and to avoid

oscillations in the directions where the error sur-

face is steep. However, this approach considerably

slows down the training process since, in general, a

small learning rate may not be appropriate for all

the portions of the error surface.

Our motivation in this paper is to provide gen-

eral theoretical results and strategies that are ap-

plicable to guarantee the convergence of adaptive

learning rate algorithms. The algorithms di�er ac-

cording to the information they need to modify the



learning rate. In training algorithms with a global

learning rate, this rate is used to update all the

weights in the FNN, while in algorithms with a lo-

cal learning rate a di�erent learning rate is used for

each weight.

2 Adaptive learning rate

algorithms
Several adaptive learning rate algorithms have been

proposed to accelerate the training procedure. The

following strategies are usually suggested: (i) start

with a small learning rate and increase it expo-

nentially, if successive epochs reduce the error, or

rapidly decrease it, if a signi�cant error increase

occurs [2, 22], (ii) start with a small learning rate

and increase it, if successive epochs keep gradient

direction fairly constant, or rapidly decrease it, if

the direction of the gradient varies greatly at each

epoch [4] and (iii) for each weight an individual

learning rate is given, which increases if the succes-

sive changes in the weights are in the same direction

and decreases otherwise [9, 16, 18, 21]. Note that

all the above mentioned strategies employ heuristic

parameters in an attempt to enforce the monotone

decrease of the learning error and to secure the con-

verge of the training algorithm to a minimizer of E.

A di�erent approach is based on Goldstein's

and Armijo's work on steepest{descent and gradi-

ent methods. The method of Goldstein [8] requires

the assumption that E is twice continuously dif-

ferentiable on S(w0), where S(w0) = fw : E(w) �

E(w0)g is bounded, for some initial vector w0. It

also requires that � is chosen to satisfy the rela-

tion sup kH(w)k � ��1 < 1 in some bounded re-

gion where the relation E(w) � E(w0) holds. The

kth iteration of an algorithm model that follows

this approach consists of the following steps:

1. Choose �0 to satisfy sup kH(w)k � ��1
0

<1

and � to satisfy 0 < � � �0 .

2. Set �k = �, where � is such that

� � � � 2�0 � � and go to the next step.

3. Update the weights wk+1 = wk��krE(wk).

However, the manipulation of the full Hessian is

too expensive in computation and storage for FNNs

with several hundred weights [3]. Le Cun [10] pro-

posed a technique, based on appropriate perturba-

tions of the weights, for estimating on{line the prin-

ciple eigenvalues and eigenvectors of the Hessian

without calculating the full matrix H . According

to experiments reported in [10] the largest eigen-

value of the Hessian is mainly determined by the

FNN architecture, the initial weights and by short{

term low{order statistics of the training data. This

technique could be used to determine �0, in Step 1

of the above algorithm, requiring additional pre-

sentations of the training set in the early training.

An alternative approach is based on the work

of Armijo [1]. Following this approach, the value

of the learning rate � is related to the value of the

Lipschitz constant K, which depends on the mor-

phology of the error surface. In this case, the BP

algorithm takes the form:

wk+1 = wk
�

1

2K
rE(wk); (2)

and converges to the point w� which minimizes E

(see [1] for conditions under which convergence oc-

curs and a convergence proof).

However, in practice neither the morphology of

the error surface nor the value of K are known

a priori. In [12] a local estimation of the Lip-

schitz constant has been proposed, as part of a

learning rate adaptation strategy that provides in-

creased rate of convergence through the Lipschitz

constant estimation and guarantees the stability of

the learning procedure.

3 Monotone decrease of the

error function and global

convergence
A training algorithm can be made globally conver-

gent by determining the learning rate in such a way

that the error is exactly minimized along the cur-

rent search direction at each epoch, i.e. E(wk+1) <

E(wk). To this end, an iterative search, which is

often expensive in terms of error function evalua-

tions, is required. It must be noted that the above

simple condition does not guarantee global conver-

gence for general functions, i.e. converges to a lo-

cal minimizer from any initial condition (see [5] for

a general discussion on globally convergent meth-

ods).

The use of adaptive learning rate algorithms

which enforce monotonic error reduction using in-

appropriate values for the critical heuristic learning

parameters can considerably slow the rate of train-

ing, or even lead to divergence and to premature

saturation [11, 19]. Moreover, using heuristics it is

not possible to develop globally convergent training

algorithms, i.e. algorithms with the property that

starting from any initial weight vector the sequence



of the weights converges to a local minimizer of the

error function.

To alleviate this situation it is preferable to

tune the learning rate, which is evaluated by an

adaptive learning rate algorithm, so that the error

function is su�ciently decreased at each epoch, ac-

companied by a signi�cant change in the value of w.

A strategy of this kind consists in accepting a pos-

itive learning rate �k along the search direction 'k

if it satis�es the Wolfe conditions:

E(wk + �k'k)� E(wk) � �1�
k
hrE(wk); 'ki; (3)

hrE(wk + �k'k); 'ki � �2hrE(w
k); 'ki; (4)

where 0 < �1 < �2 < 1 and h�; �i stands for the

usual inner product in IRn. The �rst inequality

ensures that the error is reduced su�ciently and

the second prevents the learning rate from being

too small. It can be shown that if 'k is a descent

direction, if E is continuously di�erentiable and if

E is bounded below along the ray fwk + �'k j � >

0g, then there always exist learning rate satisfying

(3){(4) [14, 5]. Relation (4) can be replaced by

E(wk + �k'k)�E(wk) � �2�
k
hrE(wk); 'ki; (5)

where �2 2 (�1; 1) (see [5]).

An alternative strategy has been proposed in

[17]. It is applicable to any descent direction 'k

and uses two parameters �; � 2 (0; 1). Following

this approach the learning rate is �k = �mk , where

mk 2 ZZ is any integer such that

E(wk+�mk'k)�E(wk) � �mk�hrE(wk); 'ki (6)

E(wk + �mk�1 + 'k)�E(wk) >

> �mk�1�hrE(wk); 'ki: (7)

An algorithm model that incorporates the above

strategy is given below. It can be implemented in

two versions depending on the input value of the

parameter s.

Algorithm 1

1. Input fE;w0;�; � 2 (0; 1); s 2 f0; 1g;m� 2

ZZ;MIT ; "g.

2. Set k = 0.

3. If krE(wk)k � " go to Step 6. Else, com-

pute a descent direction 'k.

4. If s = 0, set M� = fm 2 ZZ j m � m�g and

compute the learning rate �k = �mk by

�mk = arg max
m2M�

n
�m j E(wk + �m'k)�

�E(wk) � �m�hrE(wk); 'ki
o
:

Else (s = 1) compute the �k = �mk , where

mk 2 ZZ is any integer such that

E(wk + �mk'k)�E(wk) �

�mk�hrE(wk); 'ki

and

E(wk + �mk�1'k)�E(wk) >

�mk�1�hrE(wk); 'ki.

5. Set wk+1 = wk+�k'k. If k < MIT , replace

k by k+ 1, and go to Step 3; otherwise go

to Step 6.

6. Output fwk;E(wk);rE(wk)g.

The selection s = 0 is normally used with sec-

ond order algorithms, withm� = 0 to ensure super-

linear convergence. The selection s = 0 is not very

good for �rst-order algorithms because, on the av-

erage, it requires considerably more function eval-

uations than the selection s = 1. So, s = 1 is used

in �rst-order algorithms.

All the above strategies must be combined with

tuning subprocedures generating learning rates that

satisfy conditions (3){(4) or (6){(7) in order to

guarantee global convergence. This issue is the sub-

ject of the next section.

4 Global convergence by tuning

the learning rate
In this section we propose learning rate tuning sub-

procedures and establish useful convergence theo-

rems due to Wolfe [23, 24] and Polak [17].

The strategy based on Wolfe's conditions pro-

vides an e�cient and e�ective way to ensure that

the error function is globally reduced su�ciently.

In practice, the condition (4) or (5) generally is not

needed because the use of a backtracking strategy

avoids very small learning rates. A simple back-

tracking strategy to tune the length of the mini-

mization step, so that it satis�es conditions (3){(4)

at each epoch, is to decrease the learning rate by

a reduction factor 1=q, where q > 1 [15]. This has

the e�ect that the learning rate is decreased by the

largest number in the sequence fq�mg1m=1
, so that

the condition (3) is satis�ed. We remark here that

the selection of q is not critical for successful learn-

ing, however it has an in
uence on the number of

error function evaluations required to satisfy the

condition (3). Thus, when seeking to satisfy (3) it

is important to ensure that the learning rate is not

reduced unnecessarily so that the condition (4) is

not satis�ed. Since, in training the gradient vec-

tor is known only at the beginning of the iterative



search for a new weight vector, the condition (4)

cannot be checked directly (this task requires ad-

ditional gradient evaluations at each epoch), but is

enforced simply by placing a lower bound on the

acceptable values of the learning rate. This bound

on the learning rate has the same theoretical e�ect

as the condition (4) and ensures global convergence

[5]. The value q = 2 is usually suggested in the lit-

erature [1] and indeed it was found to work without

problems in the experiments (see [13]).

In this framework, an important theorem due

to Wolfe [5] states that if E is bounded below, then

the sequence fwkg1k=0 generated by any algorithm

that follows a descent direction 'k whose angle �k
with �rE(wk) is such that

cos �k =
h�rE(wk); 'ki

krE(wk)kk'kk
> 0; (8)

and satisfy the Wolfe's conditions, will also obey

limk!1rf(wk) = 0 [5, 14].

Theorem 1[5, 14, 23, 24]. Suppose that the error

function E : IRn
! IR is continuously di�erentiable

on IRn and assume that rE is Lipschitz continuous

on IRn. Then, given any w0 2 IRn, either E is un-

bounded below, or there exists a sequence fwkg1k=0

obeying the Wolfe's conditions (3){(4) and either

(1) hrE(wk); (wk+1 � wk)i < 0; or

(2) rE(wk) = 0; and wk+1 � wk = 0;

for each k > 0. Furthermore, for any such se-

quence, either

(a) rE(w) 6= 0 for some k � 0, or

(b) lim
k!1

E(wk) = �1, or

(c) lim
k!1

hrE(wk); (wk+1
�wk)i=kwk+1

�wk
k=0.

This is also true when Relation (4) is replaced

by Relation (5) [5](cf. Relation (c) of Step 4 of Al-

gorithm 1). For a relative convergence result where

the sequence fwkg1k=0 converges q-superlinearly to

a minimizer w� see [5].

Regarding Polak's approach, if the error func-

tion E is bounded from below the following sub-

procedure can be used to �nd an mk satisfying Re-

lations (b) and (c) of Step 4 of the Algorithm 1.

This subprocedure uses the last used learning rate

�k�1 = �mk�1 as the starting point for the compu-

tation of the next one [17]:

1. If k = 0, set m0 = m�. Else set m0 = mk�1.

2. If mk = m0 satis�es Relations (b) and (c) of

Step 4 of Algorithm 1, stop.

3. If mk = m0 satis�es (b) but not (c), replace

m0 by m0 � 1, and go to Step 2.

If mk = m0 satis�es (c) but not (b), replace

m0 by m0 + 1, and go to Step 2.

In practice, only a very small number of iter-

ations of the above subprocedure are required to

compute the learning rate. When a very small

learning rate occurs for several iterations, causing

slow convergence, the user can revert to setting

s = 0 for one or two iterations.

The search strategy of Algorithm 1 allows us

to establish the following useful convergence theo-

rem due to Polak [17]. This theorem requires the

search direction 'k to be bounded from above, it

imposes a restriction on the angle between rE(wk)

and 'k (see Relation (8)) and states that Algo-

rithm 1 is well de�ned in the sense that whenever

rE(wk) 6= 0, the search for a learning rate �k is a

�nite process, whether s = 0 or s = 1.

Theorem 2 [17]. Assume that (i) the error func-

tion E : IRn
! IR is Lipschitz continuously di�er-

entiable on bounded sets; (ii) the sequences fwkg1k=0
and f'kg1k=0 are constructed by Algorithm 1; (iii)

there exist two continuous functions N1 : IR
n
! IR

and N2 : IR
n
! IR such that

(1) for all w satisfying rE(w) 6= 0, N1(w) > 0,

N2(w) > 0 and N1(w) = 0 if and only if

rE(w) = 0 and

(2) for all k 2 IN, the wk and 'k satisfy the in-

equalities hrE(wk); '(wk)i � �N1(w
k), and

k'kk � N2(w
k).

Under these assumptions,

(a) if wk is such that rE(wk) 6= 0, then �k is

computed by Algorithm 1 using a �nite num-

ber of function evaluations and

(b) any accumulation point w� of the sequence

fwkg1k=0 satis�es rE(w�) = 0.

5 Global convergence by

adapting the search direction
A batch BP algorithm with a di�erent learning rate

for each weight is de�ned by the iterative scheme:

wk+1 = wk
� diagf�k

1
; �k

2
; : : : ; �kngrE(w

k): (9)

The learning rates are evaluated employing heuris-

tic procedures that exploit information regarding

the history of the partial derivative of E(w) with

respect to the ith weight and/or the history of the

corresponding learning rate, depending on the algo-

rithm. Appropriate values of the heuristics ensure

that the error function is decreased in each weight



direction, every epoch. The well known delta-bar-

delta method [9] and Silva and Almeida's method

[21] follow this approach. Another method, named

quickprop [6] is based on independent secant steps

in the direction of each weight. The Rprop algo-

rithm [18] updates the weights using the learning

rate and the sign of the partial derivative of the

error function with respect to each weight.

Clearly, the weight vector in Eq. (9) is not up-

dated in the direction of the negative of the gradi-

ent; instead, an alternative adaptive search direc-

tion is obtained by taking into consideration the

weight change, evaluated by multiplying the length

of the search step, i.e. the value of the learning

rate, along each weight direction by the partial

derivative of E(w) with respect to the correspond-

ing weight, i.e. ��i@iE(w). In other words, the

algorithms of this class try to decrease the error

in each direction, by searching the local minimum

with small weight steps. These steps are usually

constraint by problem-dependent heuristic param-

eters in order to ensure subminimization of the er-

ror function in each weight direction.

A well known di�culty of this approach is that

the use of inappropriate heuristic values for a weight

direction misguides the resultant search direction.

In such cases, the training algorithm cannot exploit

the global information obtained by taking into con-

sideration all the directions. To alleviate this situa-

tion, we propose the search direction to be obtained

by taking into consideration n�1 learning rates, as

directly evaluated by any adaptive learning rate al-

gorithm and analytically evaluate the remain one.

This approach has the e�ect that the search di-

rection is properly corrected and ensures that the

direction followed is indeed a descent one. The fol-

lowing theorem provides a global convergence re-

sult for training algorithms with a di�erent learn-

ing rate for each weight.

Theorem 3. Suppose that the error function E :

IRn
! IR is continuously di�erentiable. Assume

that rE is Lipschitz continuous on IRn. Then,

given any point w0 2 IRn, for any sequence fwkg1k=0,

generated by the iterative scheme:

wk+1=wk
��k diagf�k1 ; �

k
2 ; : : : ; �

k
ngrE(w

k); (10)

where �km; m = 1; 2; : : : ; i� 1; i+ 1; : : : ; n are arbi-

trarily chosen positive real numbers and

�ki =�
�

@iE(wk)
�

1

@iE(wk)

nX
j=1

j 6=i

�kj @jE(w
k); (11)

where � is a positive real number and �k > 0 satis-

�es the Wolfe's conditions (3){(4) implies that

lim
k!1

rE(wk) = 0:

Proof: Evidently, the error function E is bounded

below on IRn. The sequence fwkg1k=0 follows the

direction

'k(wk) = �diagf�k
1
; �k

2
; : : : ; �kngrE(w

k);

which is a descent direction sinceD
rE(wk); 'k(wk)

E
< 0:

Now, since 'k is a descent direction and since E

is continuously di�erentiable and bounded below

then there always exist �k satisfying the Wolfe's

conditions:

E(wk+�k'k)�E(wk) � �1�
k
hrE(wk); 'ki; (12)

hrE(wk + �k'k); 'ki � �2hrE(w
k); 'ki; (13)

for 0 < �1 < �2 < 1. Moreover, the restric-

tion on the angle �k is ful�lled since, as it can be

easily justi�ed utilizing Relation (8), cos �k > 0.

Thus, by the Wolfe's Theorem [5], it holds that

limk!1rE(wk) = 0. Thus the Theorem is proved.

Remark 1: Note that for neural networks with sig-

moid activation functions the assumption on con-

tinuous di�erentiability of the error function is re-

dundant.

Remark 2: A relative convergence result can be

proved for any sequence fwkg1k=0 satisfying the re-

lations (3) and (5).

Remark 3: The use of �k = 1 is suggested. This

has the e�ect that the minimization step along the

resultant search direction is de�ned by the value

of the learning rates. By tuning �k , the length of

the minimization step is regulated to satisfy the

Wolfe's conditions, while the weights are updated

in a descent direction.

6 Concluding remarks
A framework for the development of globally con-

vergent batch training algorithms with adaptive

learning rates has been proposed. The proposed

framework provides conditions under which global

convergence is guaranteed and strategies for tuning

the adaptive learning rate and search direction. A

new general result for the global convergence has

been established which is applicable to any train-

ing algorithm with a di�erent learning rate for each

weight.
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