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Abstract: - In many cases the supervised neural network training using a backpropagation based learn-
ing rule can be trapped in a local minimum of the error function. These training algorithms are local
minimization methods and have no mechanism that allows them to escape the inuence of a local min-
imum. The existence of local minima is due to the fact that the error function is the superposition
of nonlinear activation functions that may have minima at di�erent points, which sometimes results in
a nonconvex error function. In this work global search methods for feedforward neural network batch
training are investigated. These methods are expected to lead to \optimal" or \near-optimal" weight
con�gurations by allowing the network to escape local minima during training. The paper reviews the
fundamentals of simulated annealing, genetic algorithms as well as some recently proposed deection
procedures. Simulations and comparisons are presented.
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1 Introduction
In neural network batch training the objective is

to minimize a cost function de�ned as the multi{

variable error function of the network. More specif-

ically, supervised training of a feed{forward neural

network (FNN) can be viewed as the minimization

of an error function that depends on the weights of

the network. This perspective gives some advan-

tage to the development of e�ective training algo-

rithms, because the problem of minimizing a func-

tion is well known in the �eld of numerical analysis.
If there is a �xed, �nite set of input{output

pairs, the square error over the training set, which
contains P representative cases, is:
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This equation formulates the error function to

be minimized, in which tj;p speci�es the desired

response at the j{th neuron of the output layer at

the input pattern p and yLj;p is the output at the

j{th neuron of the output layer L that depends

on the weights of the network and � is a nonlinear

activation function, such as the well known sigmoid

�(x) = (1 + e�x)
�1
. The weights in the network

can be expressed using vector notation as:
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where w
l�1;l
ij is the connection weight from the i{

th neuron (i = 1; : : : ; Nl�1) at the (l � 1) layer to

the j{th neuron at the l{th layer, �lj denotes the

bias of the j{th neuron (j = 1; : : : ; Nl) at the l{th

layer ( l = 2; : : : ; L). This formulation de�nes the

weight vector as a point in the N{dimensional real

Euclidean space IRN , where N denotes the total

number of weights and biases in the network.

Minimization ofE(w) is attempted by updating

the weights using a training algorithm. The weight

update vector describes a direction in which the



weight vector will move in order to reduce the net-

work training error. The weight update equation

for any training algorithm is thus:

w
k+1 = w

k + �w
k
; k = 0; 1; : : : ;

where wk+1 is the new weight vector, wk is the

current weight vector and �wk the weight update

vector.

The commonly used training methods are gra-

dient based algorithms such as the popular back{

propagation (BP) algorithm [17]. It is well known

that the BP algorithm leads to slow training and

often yields suboptimal solutions [4].

This contribution presents techniques that al-

leviate the problem of occasional convergence to

local minima in BP training. Global search meth-

ods for feedforward neural network batch training

are investigated. These methods are expected to

lead to \optimal" or \near-optimal" weight con�g-

urations by allowing the network to escape local

minima during training.

The paper is organized as follows. In section 2

the BP training algorithm is reviewed and its lo-

cal minima problem is discussed. In section 3 a

recently proposed deection procedure [9] is briey

presented. The fundamentals of simulated anneal-

ing [2, 3, 6] are presented in section 4, while genetic

and evolutionary algorithms [11] are reviewed in

section 5. Section 6 summarizes and discusses our

results as well as presents simulations and com-

parisons with the standard backpropagation algo-

rithm.

2 Back{Propagation training and

local minima
The BP procedure minimizes the error function

E(w) using the steepest descent [13] with constant

stepsize �:

w
k+1 = w

k � �rE(wk); k = 0; 1; : : : :

The optimal value of the stepsize � depends on the

shape of the N{dimensional error function. The

gradient, rE, is computed by applying the chain

rule on the layers of the FNN (see [17]).

Attempts to speed up back{propagation train-

ing have been made by dynamically adapting the

stepsize � during training [8, 20], or by using second

derivative related information [10, 12, 19]. How-

ever, these BP{like training algorithms are based

on local minimization methods and they have no

mechanism to escape the inuence of a local mini-

mum. Convergence of an algorithm to a local min-

imum prevents a network from learning the entire

training set and results in inferior network perfor-

mance or possibly to premature convergence.

It is well known that the supervised training

using a BP based learning rule can be trapped in

a local minimum of the error function. Intuitively,

the existence of local minima is due to the fact that

the error function is the superposition of nonlin-

ear activation functions that may have minima at

di�erent points, which sometimes results in a non-

convex error function [4]. The insu�cient number

of hidden nodes as well as improper initial weight

settings can cause convergence to a local minimum,

which prevents the network from learning the en-

tire training set and results in inferior network per-

formance. Gradient-based backpropagation train-

ing algorithms are local minimization methods and

have no mechanism that allows them to escape the

inuence of a local minimum.

Recently, several researchers have presented con-

ditions on the network architecture, the training set

and the initial weight vector that allow BP to reach

the optimal solution [4, 7, 22]. However, conditions

such as the linear separability of the patterns and

the pyramidal structure of the FNN [4] as well as

the need for a great number of hidden neurons (as

many neurons as patterns to learn) make these in-

teresting results not easily interpretable in practi-

cal situations even for simple problems.

3 The deection procedure
It is well known that in order to minimize the error

function E we require a sequence of weight vectors

fwkg10 , where k indicates iterations converging to a

minimizer of E. Assuming that this sequence con-

verges to a local minimum r 2 IRN , we formulate

the following function:

F (w) = S(w; r; �)�1E(w);

where S(w; r; �) is a function depending on a weight

vector w and on the local minimizer r of E; � is a

relaxation parameter. Assuming that there existm

local minima r1; : : : ; rm 2 IRN , the above relation

is reformulated as:

F (w) = S(w; r1; �1)
�1 � � �S(w; rm; �m)

�1
E(w):

Our goal is to �nd a \proper" S(�) such that F (w)

will not obtain a minimum at ri; i = 1; : : : ; m; while

keeping all other minima of E locally \unchanged".



In other words, we have to construct functions S

that provide F with the property that any sequence

of weights converging to ri (a local minimizer of E)

will not produce a minimum of F at w = ri. In ad-

dition, this function F will retain all other minima

of E. We call this property deection property [9].

The following function:

S(w; ri; �i) = tanh (�ikw � rik) ;

provides F with the above mentioned deection

property, as it will be explained in the following.

Assuming that a local minimum ri has been

determined, then

lim
w!ri

E(w)

tanh (�kw� rik)
= +1;

which means that ri is no longer a local minimizer

of F . Moreover, it is easily veri�ed that for kw �

rik � ", where " is a small positive constant, it

holds that:

lim
�!+1

F (w) = lim
�!+1

E(w)

tanh (�kw� rik)
=

=E(w);

since the denominator tends to unity. This means

that the error function remains unchanged in the

whole weight space.

However, for an arbitrary value of � there is a

small neighborhood R(r; �) with center r and ra-

dius �, with �/ ��1, that for any x 2 R(r; �) it

holds that F (x) > E(x). To be more speci�c, when

the value of � is small (say � < 1) the denomina-

tor in the above relation becomes one for w \far"

from r. Thus, the deection procedure a�ects a

large neighborhood around r in the weight space.

On the other hand, when the value of � is large,

new local minima is possible to be created near the

computed minimum r (like a Mexican hat). These

minima have function values greater than F (r) and

can be avoided easily by taking a proper stepsize or

by changing the value of �. We currently investi-

gate techniques in order to �nd a proper relaxation

parameter � for each case.

The above procedure is named DETRA (DE-

active TRajectory Algorithm) and it can be in-

corporated in any training algorithm.

4 The procedure of simulated

annealing
Simulated Annealing (SA) [6] refers to the process

in which random noise in a system is systematically

decreased at a constant rate so as to enhance the

response of the system.

In the numerical optimization framework, SA is

a procedure that has the capability to move out of

regions near local minima. SA is based on ran-

dom evaluations of the cost function, in such a

way that transitions out of a local minimum are

possible. It does not guarantee, of course, to �nd

the global minimum, but if the function has many

good near{optimal solutions, it should �nd one. In

particular, the method is able to discriminate be-

tween \gross behavior" of the function and �ner

\wrinkles". First, it reaches an area in the func-

tion domain where a global minimum should be

present, following the gross behavior irrespectively

of small local minima found on the way. It then

develops �ner details, �nding a good, near{optimal

local minimum, if not the global minimum itself.

The performance of the SA [3], as observed on

typical neural network training problems, is not

the appropriate one. SA is characterized by the

need for a number of function evaluations greater

than that commonly required for a single run of

common training algorithms and by the absence of

any derivative related information. In addition, the

problem with minimizing the neural network error

function is not the well de�ned local minima but

the broad regions that are nearly at. In this case.

the so{called Metropolis move is not strong enough

to move the algorithm out of these regions [21].

In [2] SA is incorporated in the weight update

vector as follows:

�w
k = ��rE(wk) + nc2�dk ;

where n is a constant controlling the initial inten-

sity of the noise, c 2 (�0:5;+0:5) is a random num-

ber and d is the noise decay constant. In our exper-

iments we have applied this technique, named SA1,

for updating the weights from the beginning of the

training as proposed by Burton et al. [2]. Alterna-

tively, we update the weights using BP until con-

vergence to a global or local minimum is achieved.

In the latter case, we switch to SA1. This combined

BP with SA1 is named BPSA.

5 Genetic Algorithms
Genetic Algorithms (GA) are simple and robust

search algorithms based on the mechanics of natu-

ral selection and natural genetics. The mathemat-

ical framework of GAs was developed in the 1960s

and is presented in Holland's pioneering book [5].



GAs have been used primarily in optimization and

machine learning problems.

A simple GA processes a �nite population of

�xed length binary string called genes. GAs have

three basic operators, namely: reproduction of solu-

tions based on their �tness, crossover of genes, and

mutation for random change of genes. Another op-

erator associated with each of these three operators

is the selection operator, which produces survival

of the �ttest in the GA. Reproduction directs the

search toward the best existing but does not create

any new strings, the crossover operator explores

di�erent structures by exchanging genes between

two strings at a crossover position, and mutation

introduces diversity in the population by altering

a bit position of the selected string. The mutation

operation is used to escape the local minima in the

weight space. The combined action of reproduc-

tion and crossover is responsible for much of the ef-

fectiveness of GA's search, while reproduction and

mutation combine to form a parallel, noise{tolerant

hill{climbing algorithm.

GAs can be used to train neural networks. The

main advantage of these algorithms is that they

search the whole weight space. To this approach,

instead of GAs, we utilize Di�erential Evolution

(DE) strategies [18], since DEs handle non di�er-

entiable, nonlinear and multimodal objective func-

tions more e�ciently. To ful�ll this requirement,

DEs have been designed as stochastic parallel di-

rect search methods, which utilize concepts bor-

rowed from the broad class of evolutionary algo-

rithms, but require few easily chosen control pa-

rameters. Experimental results have shown that

DEs have good convergence properties and outper-

form other evolutionary algorithms [15, 16].

In order to apply DEs to neural network train-

ing we start with a speci�c number (NP) of N -

dimensional weight vectors, as an initial weight pop-

ulation, and evolve them over time. NP is �xed

throughout the training process. The weight pop-

ulation is initialized randomly following a uniform

probability distribution.

At each iteration, called generation, new weight

vectors are generated by the combination of weight

vectors randomly chosen from the population. This

operation is called mutation. The outcoming weight

vectors are then mixed with another predetermined

weight vector { the target weight vector { and this

operation is called crossover. This operation yields

the so-called trial weight vector. The trial vector

is accepted for the next generation if and only if it

reduces the value of the error function E. This last

operation is called selection.

We now briey review the two basic DE oper-

ators used for FNN training. The �rst DE opera-

tor, we consider, is mutation. Speci�cally, for each

weight vector wi
g, i = 1; : : : ;NP, where g denotes

the current generation, a new vector vig+1 (mutant

vector) is generated according to one of the follow-

ing relations:
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where wbest
g is the best member of the previous gen-

eration, � > 0 is a real parameter, called mutation

constant, which controls the ampli�cation of the

di�erence between two weight vectors, and

r1; r2; r3; r4; r5 2 f1; 2; : : : ; i� 1; i+ 1; : : : ;NPg

are random integers mutually di�erent and di�er-

ent from the running index i.

Relation (1) has been introduced as crossover

operator for genetic algorithms [11] and is simi-

lar to relations (2) and (3). The remaining rela-

tions are modi�cations which can be obtained by

the combination of (1), (2) and (3). It is clear

that more such relations can be generated using the

above ones as building blocks. In recent works [14,

15, 16], we have shown that the above relations can

e�ciently be used to train FNNs with arbitrary in-

teger weights as well.

To increase further the diversity of the mutant

weight vector, the crossover operator is applied.

Speci�cally, for each component j (j = 1; 2; : : : ; N)

of the mutant weight vector vig+1, we randomly

choose a real number r from the interval [0; 1].

Then, we compare this number with � (crossover

constant), and if r � �, we select as the j-th com-

ponent of the trial vector uig+1, the corresponding

component j of the mutant vector vig+1. Otherwise,

we pick the j-th component of the target vector

wi
g+1.



6 Simulation results and discus-

sion
Several experiments have been performed to evalu-

ate the training methods mentioned in the previous

sections and compare their performance. Below,

we exhibit preliminary results on two notorious for

their local minima problems. The algorithms have

been tested using the same initial weight vectors

chosen from the uniform distribution in the inter-

val (�1;+1). BP and SA1 termination condition

has been E � 0:04. Note also that, BPSA and DE-

TRA updated weights using BP until convergence

to a global or local minimum is obtained. Global

convergence has been achieved when E � 0:04,

while local convergence has been considered when

the stopping condition jrE(wk)j � 10�3 has been

met and wk has been taken as a local minimum ri

of the error function E.

We call DE1 the algorithm that uses relation (1)

as mutation operator, DE2 the algorithm that uses

relation (2), and so on. We note here that a key

feature of the DE algorithms is that only error

function values are needed. No gradient informa-

tion is required, so there is no need of backward

passes. We made no e�ort to tune the mutation

and crossover parameters, � and � respectively. We

have used the �xed values � = 0:5 and � = 0:7, in-

stead. The weight population size NP has been

chosen to be twice the dimension of the problem,

i.e. NP= 2N , for all the simulations considered.

Some experimental results have shown that a good

choice for NP is 2N � NP � 4N . It is obvious that

the exploitation of the weight space is more e�ec-

tive for large values of NP, but sometimes more er-

ror function evaluations are required. On the other

hand, small values of NP make the algorithm inef-

�cient and more generations are required in order

to converge to the minimum.

Problem 1. Exclusive-OR classi�cation problem:

classi�cation of the four XOR patterns in one of two

classes, f0; 1g using a 2-2-1 FNN, is a classical test

problem [17, 19]. The XOR problem is sensitive

to initial weights and presents a multitude of local

minima [1]. The stepsize is taken equal to 1:5 and

the heuristics for SA1 and BPSA are tuned to n =

0:3 and d = 0:002. In all instances, 100 simulations

have been run and the results are summarized in

Table 1.

Problem 2. The three bit parity problem [17]: a 3{

3{1 FNN receives 8, 3{dimensional binary input

patterns and must output a \1" if the inputs have

an odd number of ones and \0" if the inputs have an

even number of ones. This is a very di�cult prob-

lem for an FNN because the network must deter-

mine the proper parity (the value at the output) for

input patterns which di�er only by Hamming dis-

tance 1. It is well known that the network's weight

space contains \bad" local minima. The stepsize

has been taken equal to 0:5 and the heuristics for

SA1 and BPSA have been tuned to n = 0:1 and

d = 0:00025. In all instances, 100 simulations have

run and the results are summarized in Table 1.

Training XOR Problem Parity Problem

Method Succ. Mean s.d. Succ. Mean s.d.

BP 42% 144.1 112.6 91% 932.0 1320.8

SA1 43% 424.2 420.8 22% 805.4 2103.1

BPSA 65% 1661.9 2775.7 66% 2634.0 6866.8

DE1 75% 192.9 124.7 91% 622.6 522.1

DE2 80% 284.9 216.2 61% 1994.1 657.6

DE3 97% 583.9 256.3 99% 896.3 450.6

DE4 98% 706.1 343.7 98% 1060.2 716.6

DE5 85% 300.5 250.2 26% 2112.0 644.9
DE6 93% 482.9 264.9 44% 2062.5 794.8

DETRA 100% 575.1 387.3 100% 760.0 696.4

Table 1: Comparative results

The results of Table 1 suggest that combina-

tion of local and global search methods like BPSA

and DETRA provide a better probability of suc-

cess than the BP. Note that the performance of

SA1 is not the appropriate one although derivative

related information has been used. On the other

hand, DETRA escapes local minima and converges

to the global minimum in all cases. A considera-

tion that is worth mentioning is that the number

of function evaluations in BPSA and DETRA con-

tains the additional evaluations required for BP to

satisfy the local minima stopping condition.

The results indicate that the algorithms of the

DE class are promising and e�ective, even when

compared with other methods that require the gra-

dient of the error function, in addition to the error

function values. For example, DE3 and DE4 have

exhibited very good performance for the test prob-

lems considered. On the other hand, there have

been cases where a discrepancy has been found

in DE's behavior; see for example DE5 and DE6.

For a discussion on the generalization capabilities

of the networks generated by the DE algorithms

see [15, 16].

In conclusion, global search methods provide

techniques that alleviate the problem of occasional

convergence to local minima in feedforward neural



network training. Escaping from local minima is

not always possible, however these methods exhibit

a better chance in locating appropriate solutions.

Preliminary results on two notorious for their local

minima problems are promising.
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