
Developing a simulation platform for an experimental architecture

BART GOEMAN, KOEN DE BOSSCHERE and HENK NEEFS
Department of Electronics and Information Systems (ELIS)

Universiteit Gent
St.-Pietersnieuwstraat 41, B-9000 Gent

BELGIUM

Abstract: - In this paper, we describe how we have bootstrapped a compiler/simulator chain for an experimental
computer architecture. The problem was that in the beginning, there was neither a compiler, nor a simulator, and that
both had to be developed simultaneously, while the architecture was still evolving over time. We describe how the
software was created in two stages: we started with a functional platform, derived from the existing SimpleScalar
toolset, and this functional version was then used as starting point for the real architectural platform. The functional
compiler was used to develop the functional simulator, which was in turn used to develop the optimizing compiler and
the architectural simulator. In addition, we describe the five techniques that had the biggest impact on the development
speed of the compiler and simulator: the development of a functional compiler by means of post-processing, the use of
a reference execution to verify the simulator operation, an text-based interface between the compiler and the simulator,
an object oriented design, and ample trace-based debugging facilities.

Key-Words: computer architecture, simulation, Block Structured Architecture CSCC'99 Proc.pp..3681-3688

1 Introduction
Simulation is a cheap and powerful technique during the
design stage of a new computer architecture. It does not
only allow for a cost-effective and quick evaluation of
new micro-architectural concepts (e.g., new branch
prediction schemes, memory hierarchies, the effect of
speculative execution), but it also allows to experiment
with the visible aspects of the architecture, such as the
number of registers, the availability of particular
instructions, the word size, etc. In the latter case, the
simulator will require different program code to work
on. Hence, an extra set of companion tools that match
the simulator is required (compiler, assembler, linker and
libraries). We will call the combination of the simulator
and the set of companion tools the simulation platform.
A simulator in which some of the visible architectural
parameters can still be varied is called a simulator for an
experimental architecture.

One of the major problems with the
development of a simulation platform for a new
experimental architecture is that both the simulator and
the companion tools must be developed in parallel,
which creates a bootstrapping problem. The first version
of the simulator must be developed without the
availability of real programs, such as the Spec
benchmarks, and the first version of the compiler must
developed without simulator to check the correctness of
the generated code.

Since developing a complete simulator or
compiler is a non-trivial task that requires several

thousands of lines of code to be written, the lack of a
minimal simulator or compiler is seriously slowing down
the process of debugging the complete platform. A major
difficulty is that the real cause of a bug can be hidden in
either the compilation tools or in the simulator, and that
sometimes it is very hard to track it down. In order to
efficiently debug the simulation platform, it is therefore
of paramount importance to detect the real cause of a
bug as soon as possible.

In this paper we present the approach we have
used in developing a simulator for an architecture under
development, the block-structured architecture (BSA)
[2], in which instructions are grouped in fixed-size
blocks, and in which the instructions that belong to a
single block are executed in a data-flow manner.
Instructions in a block communicate by exchanging
values along the data flow paths, blocks exchange values
by means of a set of registers. Since this is an
experimental architecture, the size of the blocks, the
number of registers, the internal subdivision of a block
(ALU instructions, control flow instructions, data
movement instructions), and even the instructions
themselves must be modifiable. Changing these
architectural parameters however implies that the
compiler must have the ability to generate code that can
be substantially different, and the simulator must be
flexible enough to cope with it.

In order to efficiently develop the simulation
platform we decided to make maximally use of existing
tools and code, and to make sure that errors in one of the
tools of the platform could be tracked down as soon as

possible. In order to reach this goal, we have developed
two platforms. A first ‘functional’ platform was based
upon existing tools (SimpleScalar toolset [1]). This
platform was able to compile and simulate the Spec
benchmarks, albeit neither in a very optimized way, nor
was it able to compute cycle-true execution times.
Section 2 describes the functional platform. Section 3
describes the second ‘architectural’ platform, which was
bootstrapped from the functional platform, generates
more optimal code, and contains an accurate simulator
for the BSA (including e.g., out-of-order and speculative
execution).

In other words, we started with a preliminary
(called functional) version of the compiler that enabled
us to thoroughly test the functional simulator. Once the
functional simulator was stable, it was used to develop
the optimized compiler and the architectural simulator.
The functional version of the compiler was then no
longer used.

The remaining sections contain an evaluation of
our approach, some related and future work, and a
conclusion.

2 Functional platform
The basic functionality of the functional platform is to
functionally execute a program. This means that the
instructions will be executed in the same order in which
they occur in the program, without the performance
enhancing techniques that are currently available (out-
of-order execution, speculative execution, etc.). The
only interest of a functional simulator is to obtain the
result of a given program. This in contrast with an
architectural (also called cycle-true) simulator which
provides much more information, and is generally not
used to obtain the outcome of a given program, but
instead to learn more about the execution of the
program. We describe here how we bootstrapped the
functional platform from the SimpleScalar toolset.

2.1 A post-processor as code-generator
Writing a full compiler for a new architecture is
generally not needed these days. Since all relevant
benchmarks that are used to evaluate an architecture are
either written in C or in Fortran (Spec benchmarks), and
since Fortran can efficiently be translated into C (e.g., by
means of the f2c translator), it is generally sufficient to
implement a C-compiler. Since there are several publicly
available C-compilers around, it often suffices to
retarget the compiler, i.e., to add a new code generation
stage to the compiler. Some compilers (e.g., gcc) have a
generic code generator that can be customized by means
of an accurate machine description.

The ‘functional’ compiler for the BSA even
went one step beyond retargeting in the sense that it

even reused the back-end of the SimpleScalar compiler.
The instruction set of our BSA turns out to have many
instructions in common with the SimpleScalar-
architecture. So, we took the complete SimpleScalar
compiler, and we wrote a post-processor to translate the
code it produces into BSA-code. The post-processor
does a source-to-source translation of the assembly
language output of the SimpleScalar compiler. Hence, its
output is a readable BSA-assembly language program
that can be visually inspected for correctness

This approach results in non-optimal but correct
code (we basically create one BSA-block per basic
block, hence, the functional correctness of the output
will entirely depend on the correctness of the input
which we trust). Carrying out sophisticated BSA-
optimizations in a post-processor would be difficult
anyhow because important information, such as aliasing
information about variables is not available anymore at
this level. The major advantage of the post-processor
approach for this first compiler version is that it can be
implemented fast. The final optimized code-generator
for the BSA is developed for the second, architectural,
platform.

2.2 The use of a reference execution
The fact that our compiler produces BSA-code that can
be related with the original SimpleScalar code has had
an important application in the initial debugging of the
simulator and has considerably reduced the time needed
to debug the simulator.

The idea is as follows: since both programs are
computing the same result with very similar instructions,
many of the BSA-instructions must produce exactly the
same result as the corresponding instruction in the
original program. By asking the post-processor to add
information about the original SimpleScalar instruction
to every instruction of the BSA-program, the BSA-
simulator has all the information it needs to create a link
between the two executions. However, if an instruction
manipulates a value that is an instruction pointer (e.g.
return address), the corresponding BSA-instruction
manipulates a block pointer; these values are not the
same. The simulator has no means to determine if a
certain value is an instruction pointer or not. But in all
cases, both programs follow the same control path. In
order to avoid false warnings, only the control path is
checked.

Figure 1: The reference mechanism

As program traces are usually huge, it is not
feasible to store them. Instead, the BSA-simulator forks
off the SimpleScalar simulator on the corresponding
program, and both simulators communicate by means of
a pipe. The verification of the execution of the BSA-
simulator against a reference guarantees that an error
made by the BSA-simulator is detected either at the end
of the block, or shortly afterwards.

This facility has been proved to be extremely
useful for debugging the BSA-simulator. It furthermore
made us confident that the BSA-simulator works
correctly. Not only do we see that the Spec-benchmarks
produce the correct results, but on top of that, we also
know that all internal operations that can be related to
the original program are also correct, even in the case
where for some reason, they do not directly affect the
output. We were even able to find some errors in the
SimpleScalar simulator.

2.3 A text-based compiler-simulator interface
The interface between compiler and simulator is not a
binary executable, but a plain text file with the assembly
language source program, enhanced with the relation
between the BSA-instructions and the SimpleScalar
instructions they originate from, and some other
directives to the simulator.

There are several reasons why we use a source file
as input to the simulator:
1. It makes visual inspection of the simulator input

straightforward without extra tools. It also allows the
developer to modify the input program by means of
a simple editor for testing purposes.

2. It makes the binary encoding of the instructions
unnecessary. Remember that we are creating a
simulation platform for an experimental architecture.
Changing architectural parameters like the number
of registers might require the design of a new binary
format, and some parameter values might even be
excluded because they are not compatible with a
given binary format (e.g., it is hard to code three
register operands in 32-bit instruction words in an
architecture with e.g., 1024 registers). A source
representation of the program does not have these
limitations, and is therefore better suited for an
experimental architecture.

3. The simulator front-end that reads in the program
can easily be generated by means of lex and yacc.
The development of such a front-end is no wasted
effort, because in the final platform, it can be re-used
as the front-end of the assembler. In the first
platform, we are actually merging the assembler and
the simulator. The front-end also checks the code
thoroughly. Invalid instructions are detected in an
early stage.

4. A direct link between the compiler output and the
simulator enables us to communicate extra
information between the compiler and the simulator.
This information can be added to the compiler
output in a variety of ways without having to worry
how this information must be represented in the
binary format. Currently, there are two extra sources
of information that are being communicated this
way: (i) the relation between the original
SimpleScalar instructions and the BSA-instructions.
This information is necessary to verify the operation
of the BSA-simulator against the operation of the
reference simulator; (ii) the definition of the
architecture. Since we are developing a simulator of
an experimental architecture, it is important that the
compiler communicates the relevant parameters of

simulationcompilation

BSA
assembler

code

SimpleScalar

executable

SimpleScalar
functional
simulator

(reference)

BSA

post-processor
pipe with

instruction
trace

BSA functional
simulator

error
report

the architecture (e.g., number of registers, word size,
structure of a block, etc.) to the simulator. If this
would not be the case, the simulator could use the
wrong architecture, and hence produce strange
errors. The fact that this information is contained in
the program was of great help during the
development of the simulation platform. The
simulator never ran with the wrong architectural
parameters.

2.4 Object oriented design
From the very beginning we decided that the simulation
platform had to be designed using an object-oriented
methodology. The flexibility that comes with an object-
oriented implementation is extremely useful when
studying an experimental architecture. Indeed, by
modeling every functional part of the architecture as an
object, and by letting objects communicate by means of
messages, it is very easy to conduct experiments by
replacing a particular component in the simulator. Once
that the object interface to e.g., a branch predictor has
been defined, it can be re-implemented easily to play
with several different prediction schemes. Since the
interface with the simulator is separated from the
implementation, even students that do not fully
understand the implementation of the simulator, can
replace it with their own branch predictor. Many of the
hard to solve problems during the development of the
simulator were caused by non-object oriented parts that
were copied from the SimpleScalar simulator which is
written in C.

The fact that the object interfaces were clearly
defined, created yet another opportunity to prevent errors
from hiding themselves deep in the simulator. We took
advantage of the object interfaces to explicitly check all
the arguments passed to objects. As soon as some of the
arguments are out of range or contain garbage, an error
message is produced. This allowed us to even find a bug
in one of the spec benchmarks where we discovered that
one of the stack cells that were used by cc1 was not
initialized, and hence contained garbage. Fortunately, the
value read was not used by the program, and hence, did
not cause any harm.

2.5 Trace-based debugging tools
Although we did everything to prevent bugs from
occurring, we still needed some tools to efficiently find
remaining errors in the program. We did not provide
support for interactive single stepping or breakpoints.
Instead, we added an equivalent tracing mechanism that
allows us to trace the execution of the program at
various levels of detail, and the possibility to take
snapshots of the simulator state. The choice for tracing
was motivated by the fact that a simulation run often
takes hours to finish. It does not make sense to wait for

hours in an interactive debugger until a particular error
in a program occurs. An error is frequently discovered
by the symptoms it causes, but when the symptoms
occur, it is often too late to find out what caused them,
and one has to restart the execution to track down the
real cause of the error (cyclic debugging). Hence, for
debugging such a long-running program it is better to
produce a detailed trace of (part of) the execution.
Analysis of a detailed trace is then a more effective way
to find the error as it will require less reruns. A second
observation was that a debugger also takes resources,
and hence slows down the simulator even further.
Therefore, we decided that an interactive approach was
impractical.

2.5.1 Changing the trace-level
The major impediment when tracing a program is the
huge size of the resulting traces. Therefore, we
implemented the following mechanism. A user can add
special trace commands (actually, this is in the form of
comments) to his program (this is easy because the
program is available in source format). These trace
commands will switch on and off the tracing when
particular events occur. Besides switching the tracing on
and off, they can also change the kind of information and
amount of information collected in the trace (several
different trace levels). This allows the developer to really
track down the error after a few runs of the program.

2.5.2 Taking snapshots
By means of the same mechanism, the developer can
also add commands that store a snapshot of various parts
of the state of the simulator (e.g., a part of the main
memory, the registers, the complete state of the
processor core, part of the stack). All information that is
necessary to interpret this information (e.g., call chains)
is also provided. In addition to this, the developer can
also request that a subset of the objects the simulator is
composed of, dump their state on the trace file. This
feature has also helped quite a lot to efficiently debug the
first versions of the simulator.

2.5.3 Post mortem debugging
If this information is insufficient to track down the error,
the simulator can be forced into a core dump at the
moment the error occurs or when the simulator crashes.
This provides access to all data structures by means of a
standard debugger, amongst which the sequence number
of the block that was being executed. This number can
be used in a subsequent run to start detailed tracing e.g.
100 blocks before the problematic block would be
executed again. This feature makes it rather
straightforward to track down the real cause of a crash. It
turned out that most errors could be fixed in just a couple
of runs of the simulator.

3 The architectural platform
Once the functional platform was stable, it was used to
bootstrap the architectural platform, composed of a
cycle-by-cycle out-of-order simulator and an optimizing
compiler. The same compiler-simulator interface, object-
oriented design, and debugging tools were used, but the
compiler and reference execution were different.

Fig. 2: bootstrapping process. The arrows indicate the
dependencies (during development)

First, an out-of-order simulator is built. Testing
is done using the trusted code from the post-processor.
The result can be compared with the output from the
functional simulator.

Second, an optimizing compiler is built. This
one uses the functional simulator and the post-processor
to check for correctness. The out-of-order simulator is
used to measure the impact from these optimizations on
performance.

3.1 Optimizing compiler
This compiler has to carry out optimizations that are
essential for a BSA: superblock and hyperblock
formation, i.e., the formation of large basic blocks by
means of predication, in-lining, code duplication, etc.
These optimizations require information from the
compiler that is not available anymore in the
SimpleScalar output, and therefore the optimizing
compiler is now no longer designed as a post-processor
for the SimpleScalar output, but as a compiler back-end
in its own right. The interface between compiler and
simulator is still a text file, but this time, the relation
between the optimized and the original SimpleScalar
code has completely disappeared. This is however not a

problem anymore since we now trust the functional
simulator (it has been tested thoroughly during the
development of the functional platform). The reference
execution was only necessary to debug the functional
simulator, not to use it.

3.2 The reference execution
For the architectural simulator, we again try to rely on a
reference execution to speed up the debugging process.
This time, the reference execution for the architectural
simulator is provided by the functional simulator
executing the same optimized code. Since block
numbers in the functional and architectural simulator are
identical (after all, they are executing the same program),
the relation between the functional and architectural
execution is now fairly straightforward.

This is however not true for the instructions in a
block. The architectural simulator uses an out-of-order
model for the execution the instructions in a BSA block.
Forwarding, branch (mis-)prediction, data value
speculation are modeled explicitly, resulting in a
different instruction stream compared to the functional
simulator (this time it is a data flow execution instead of
a sequential execution). However, the blocks themselves
are executed sequentially. After finishing a block, both
simulators should be in the same state, which can be
compared. Hence, we can compare the values produced
by the blocks, and the control path between blocks.

The functional simulator is forked off by the
architectural simulator and communicates values and
control flow information to the architectural simulator
through a pipe. As a result, it is impossible that an error
remains unnoticed longer than one block (containing
some tens of instructions). Debugging this simulator was
an easy job.

4 Evaluation
Since we tried to maximally reuse existing code and
tools, we succeeded in implementing the functional and
architectural simulation platform in about 10 person
months by two (inexperienced) undergraduate students
(the optimizing compiler is not included in this effort, as
it was not included in the initial effort to produce the
architectural simulation platform). Both simulators and
the post-processor are approximately 30000 lines of C++
code. The code that was developed is able to correctly
compile and simulate the eight SPECint95 benchmarks,
and five Unix utilities (wc, grep, perl, yacc and lex).
This implied that a minimal OS-API had to be
implemented in the simulator too. This aspect was taken
care of by reusing existing libraries from the
SimpleScalar simulator.

Although execution speed was not a major

functional
simulator

compiler =
post-processor

out-of-order
simulator

 reference
 execution

reference
code

optimizing
compiler

Evaluation
optimizations

concern  the priorities were: correctness (accuracy),
flexibility, maintainability, robustness  we give here
some information on the simulation speed.

Table 1 shows the simulation time for yacc and
lex, and this for both BSA simulators (functional and
architectural) and their SimpleScalar (SS) equivalents.
The simulation time is also compared to a native version
of the program.

unit yacc lex
#SS Instructions 106 4.47 39.45
Native s 0.06 0.16
SS functional s 2.77 22.8

slowdown 46 143
SS architectural s 67 541

slowdown 1117 3381
BSA functional s 138 960

slowdown 2300 6000
BSA architectural s 406 3344

slowdown 6767 20900
Table 1: simulation speed.

The functional simulator is approximately 50
times slower than the comparable SimpleScalar
functional simulator. This can be explained by a number
of design decisions we have made: (i) the input is text-
based (free format), which requires the input program to
be parsed, (ii) the object-oriented design is responsible
for a slowdown, (iii) the flexibility that was requested
causes a major slowdown because anything should be
dynamically modifiable, nothing could be optimized by
the compiler (such as the number of registers, structure
of a block, and so on), and (iv) last but not least, the
BSA-architecture is more complicated than the
SimpleScalar architecture, and hence, requires more
resources to simulate, e.g., BSA-blocks puts instructions
in different sections, according to their type (memory,
floating point, one-cycle and multiple cycle arithmetic &
logic); this means the functional BSA simulator has to
retrieve the original program order, the SimpleScalar
simulator does not.

The architectural simulator is only 6 times
slower. Besides the causes just mentioned, this is in
addition due to the extra detail of simulation (e.g.
forwarding is explicitly modeled).

Table 2 shows the slowdown caused by the use
of a reference execution to verify the operation of the
simulator.

program no reference reference slowdown
(s) (s)

yacc 126 159 26%
lex 960 1265 32%
compress 347 466 34%
li 1242 1553 25%
ijpeg 803 1035 29%
average 29%

Table 2: functional simulation time

A slowdown (29% on average) is observed,
which is acceptable, given the huge debugging benefits
that come with it. The reason that the slowdown is
limited is that the functional SimpleScalar simulator is
about 50 times faster than the BSA-simulator, and hence,
the additional resource consumption (2%) is hardly
noticeable. The major source (remaining 27%) of
slowdown is the communication overhead between the
two simulators, and the verification itself.

The architectural simulator uses the functional
simulation as a reference. The relative slowdown is now
37% as shown (See Table 3).

program no reference reference slowdown
(s) (s)

yacc 406 551 36%
lex 3344 4443 33%
compress 1009 1415 40%
li 3734 5249 41%
ijpeg 2568 3507 37%
average 37%

Table 3: simulation time for detailed, architectural
simulation

Since the functional simulator is 3 times faster
than the out-of-order one (Table 1), the simulation
overhead is now the dominating factor. The
communication and verification overhead can now be
neglected.

5 Related work
Many different approaches are used to construct a
simulation platform for computer architecture, but we
have not found an approach that is similar to ours.

5.1 Trace-based simulations
Many simulators use an execution trace as input. Such a
simulator is easy to develop: no functional component is
needed [7] and hence, a trace-based execution is always
100% deterministic. This type of simulation is often
sufficient to investigate the memory subsystem [5,8],

where the only information that is needed are data access
streams which can be extracted from a trace.

An important disadvantage of trace-based
simulation is the lack of information concerning
misspeculations: a trace only mentions the committed
instructions, whereas in an aggressive out-of-order
processor core many instructions are in fact the result of
misspeculation: a 4-way issue processor is reported to
have an instruction overhead of 16% to 105% [6]1. This
information is not included in an execution trace.

5.2 Direct execution
Another technique is the translation of the code for the
target architecture (i.e. the architecture being simulated)
into a native program for the host (i.e. the machine
where the simulation is executed). The resulting program
emulates the target architecture. The code is
instrumented to extract simulation results. This allows
very fast simulation: the simulation code executes only
seven to ten times slower than the native version [3].
However, if the level of detail increases, this speed
advantage disappears.

This technique makes all architectural2

information available to the instrumentation code, but
not the detailed micro-architectural state. Consequently,
the problems concerning misspeculations are inherited
from trace-based simulation. Second, the simulator is
bound to a particular host platform. Third, a textual
interface, offering many advantages, is not possible.

This is however an interesting technique if one
is only interested in functional simulation (to check
compiler algorithms). It is often used for profiling
purposes.

5.3 Interpreter
This type of simulation uses an executable as input (or
an equivalent textual representation, as in our case). All
necessary information is obtained by interpreting each
instruction and maintaining the complete architectural
state. This approach is far more difficult than using a
trace: one has to implement a functional component and
handle system calls. Additionally, system calls interact
with the host environment. This weakens the
reproducibility3. The main advantage is that one can
construct a very accurate simulator, e.g. it is possible to
explicitly follow a wrong branch prediction, so this is the
best basis to construct a detailed architectural simulator,
as done in [1].

1 This problem can be circumvented by also using the object
file [7], but this also makes a functional component necessary.
2 The information visible to the programmer, e.g.
register values, but not the invisible information such
as branch prediction, caches, etc.
3 This can be solved using I/O traces.

In our case, trace-drive simulation was not
usable for our first functional simulator platform,
because, of course, there is no tool that can produce a
trace for our Block Structured Architecture. An
interpretative functional simulator was constructed,
because this way we aren’t bound to a particular host
platform (direct execution), and because this is the best
starting point for a detailed architectural simulator.

6 Future work
We have been using the two simulation platforms for
more than one year now. They have become quite stable,
and many experiments have been carried out with them
(e.g., new branch prediction schemes, value prediction,
caches have been added, gathering statistical information
about executions, etc.). After the final iteration of the
BSA-architecture, we plan to replace the existing text-
based compiler/simulator interface by a binary interface.
This will be done by removing the source code front-end
from the simulators, and using this front-end as front-
end for an assembler program. The simulator will get a
new binary front-end.

Execution time is a weak point for all detailed
simulators. Parallel machines can be an attractive means
to alleviate this problem. Partitioning a simulation
algorithm requires that the task can be divided into
relatively independent subtasks (communication
overhead); this technique is therefore mainly used in the
simulation of multiprocessor architectures, where the
partitioning is trivial [3,8].

A Block Structured Architecture that executes
multiple blocks in parallel maps naturally on a
multiprocessor host platform. We will investigate the
usefulness of parallel simulation for this type of target
architecture.

7 Conclusion
In this paper, we have described the bootstrapping
process of a simulation platform for an experimental
computer architecture (BSA). We claim that the
development of an architectural simulator is greatly
facilitated by the existence of a functional simulator that
can be used as reference. That is why we started this
work with the development of a functional simulator.

We have also described five techniques that had
a serious impact on the development speed of the
compiler and simulator: the use of a functional compiler
implemented by means of a post-processor for an
existing compiler, the use of a reference execution, an
ASCII interface between the compiler and the simulator,
an object oriented design, and trace-based debugging
facilities.

The simulation platform has now been in use for
more than one year, and has been quite stable since the
very beginning.

Acknowledgements
Bart Goeman is supported by FWO project 3G003699.
Koen De Bosschere is research associate with the Fund
for Scientific Research – Flanders. Henk Neefs is
supported by GOA project 12.0508.95.

References:

[1] Doug Burger, Todd Austin and Steve Bennett,
Evaluating Future Microprocessors: the
SimpleScalar Tool Set, University of Wisconsin-
Madison, TR-1342, 1997.

[2] Henk Neefs, Koen De Bosschere and Jan Van
Campenhout, “Issues in Compilation for Fixed-
Length Block Structured Instruction Set
Architectures,” in Workshop on Interaction
between Compilers and Computer Architectures,
San Antonio (Texas), February 1997.

[3] J. H. Moreno, M. Moudgill, K. Ebcioglu, E.
Altman, C. B. Hall, R. Miranda, S-K. Chen, and A.
Polyak, Simulation/evaluation environment for a
VLIW processor architecture, IBM Journal of
Research & Development : Performance analysis
and its impact on design (PAID), Vol. 41, No.3,
1997, pp.287-302.

[4] Bart Goeman, Development of a Simulator for a
Block Structured Architecture, Master’s thesis,
University of Ghent, 1998.

[5] Luis Barriga, Mats Brorsson and Rassul Ayani, A
model for Parallel Simulation of Distributed Shared
Memory, Workshop on Modeling, Analysis and
Simulation of Computer and Telecommunication
Systems, San Jose, CA, February 1996.

[6] Srilatha Manne, Arthur Klauser and Dirk
Grunewald, Pipeline Gating: Speculation Control
for Energy Reduction, Proceedings of the 25th
Annual International Symposium on Computer
Architecture, 1998, pp. 132-141.

[7] Henk Neefs, Koen De Bosschere and Jan Van
Campenhout, A C++ Simulator modelling a
modern data-flow scheduling Microprocessor,
Seminar on Parallel Computing, Noordwijk aan
Zee (NL), October 1996

[8] Xiaohan Qin and Jean-Loup Baer, A Comparative
Study of Conservative and Optimistic Trace-driven
Simulations, Proceedings of the 28th Annual
Simulation Symposium, 1995, pp.42-50.

