
A Multi-Level Computer Architecture Simulator

FABIO ABBATTISTA SEBASTIANO PIZZUTILO FILIPPO TANGORRA
Dipartimento di Informatica

Università di Bari
via Orabona 4, 70126 Bari

ITALY

Abstract: - We describe a simulator, which constitutes a useful supporting tool in all activities involving computer ar-
chitecture definition, such as designing or teaching. The system, developed for using an object oriented approach, in-
tegrates in a single tool different architecture models, such as CISC and RISC architecture types, and different com-
puter levels, such as micro-programming and instruction set levels.
 The system allows the user to define the computer architecture at the instruction set level and then to switch auto-
matically to the lower level of the corresponding micro-architecture. It is composed of two parts: a graphical inter-
face, which displays the components of the architecture and allows the user to act directly on component contents;
and a manager module, which executes the instructions and micro-instructions. The simulation process consists of a
loop, in which two strictly correlated phases are executed: the definition phase, in which the user defines the archi-
tecture through a choice of hardware components, and a test phase, in which the user tests the designed architecture in
order to verify the result of the design activity of the previous phase.
 The system is written in C++ language and it is used in a didactic environment for the laboratory activity of com-
puter architecture courses. IMACS/IEEE CSCC'99 Proceedings, Pages:3701-3707

Key-Words: Architecture Simulation, Computer Architecture Design, Education, Object-Orientation, Prototyping.

1 Introduction
The simulation is recognized as a valid and flexible
tool, which leads to both a clear comprehension of the
functioning of complex systems and the possibility of
exploring new solutions by submitting the model to
various experimental conditions. In particular, due to
its great versatility, the software simulation allows the
user to study and test the system performance, without
building the actual system. Moreover, computer
simulators are advantageous for the following reasons:
a) the low cost of developing a simulator with respect
to hardware implementation costs; b) the ability to
constantly keep the laboratory up-to-date with tech-
nological innovations; c) the possibility of having dif-
ferent architectures implemented on the same work-
station for comparative studies; d) the ability to
graphically represent events, which cannot be immedi-
ately observed in the hardware (register contents,
memory).
 Most of the current simulators represent specific
architectures and cannot be used if architectural char-
acteristics are changed [1-2]. In fact, when the com-
puter architecture is fixed, the assembly language, that
permits the use of the defined architecture by the
simulator, is also fixed. Therefore, if the architecture
is modified, the computer simulator must also be re-
designed in order to match the new characteristics with
the assembly language. Such a lack of flexibility could
be overcome by allowing the user to experiment and

verify the architecture performance immediately after the
design modifications. This flexibility is common in the
simulation field and allows the analyst to use the simula-
tion model in various experimental conditions, but it has
not been applied in the computer simulation field. Al-
though languages for hardware description have been
devised, the lack of compilers for these languages limits
their application and restricts the test of defined archi-
tectures with the assembly language. The rapid
prototyping paradigm overcomes the previous limits of
the computer architecture simulation.

In the software development field, the rapid
prototyping paradigm constructs the definitive software
system after the user evaluation of a prototype. The pro-
totype is built on the base of user requirements. A
graphical interface allows the user to verify whether the
prototype fits the desired design specifications, otherwise
new user requirements are formulated for a new proto-
type. In this way, the software system is obtained in an
evolutionary fashion, by refining initial requirements
until they correspond to user needs. Analogously, we
aim at designing a computer architecture, which gives
the user the possibility to define architectural require-
ments. From these requirements it would be possible to
obtain a software prototype that simulates the defined
architecture and allows to test the architecture with the
assembly language, in order to verify the coherence be-
tween the prototype and the requirement specifications.

In our approach the computer architecture design is
viewed as a collecting of hardware components. Reg-
ister types (program counter, stack pointer, general,
index…), ALU, cache memory, storage locations are
primitives with which we represent a computer archi-
tecture design. These primitives must be designed
opportunely in order to support the rapid prototyping
paradigm in simulating the computer architecture. The
design has to be done by characterizing the hardware
component with a corresponding reusable software
component. So, we have implemented the software
components as objects.

Our system supports the computer architecture de-
sign through object-oriented prototyping. Object-based
prototyping consists in the rapid construction of a
system that simulates computer architectures by using
objects that encapsulate properties and functions of ba-
sic hardware components, such as building blocks.

In the object-oriented technology, the architecture
description aspect is separate from the implementative
aspect, so the user can concentrate on architecture com-
ponents, rather than on the simulator code in its work-
ing session.

The object-oriented technology is widely used in
VSLI design [3] and has been proposed also for
hardware description and simulation [4, 5], as it
concerns two classes of advantages. The first class is
related to the flexibility of the modeling process. The
properties of the object-oriented approach (abstraction,
encapsulation, inheritance and hierarchy) are closely
linked to the physical components, and the designer
work is not absorbed in implementation aspects but it
is concentrated at a higher level of abstraction. In our
project, this is an essential advantage because the ar-
chitecture designer should be only involved in the
choosing of components of the computer architecture.

The second class of advantages is related to the de-
velopment process for the rapid prototyping. The fea-
tures of the object-oriented development process
(modularity, extensibility, reusability and reduced
code) allow to implement a tool in which the user tests
the architecture as soon as he finishes choosing com-
ponents.

We have experimented the system describing
various computer architecture types, such as CISC and
RISC architecture, at the instruction set level [6, 7] and
also we have verified the approach with a different
type of description granularity at the micro-
programming level.

The paper is organized in three sections. Section 2
analyzes the hierarchy of classes and objects used in
the tool; there are shown examples of classes. In sec-
tion 3, a description of the functional architecture of
our system and details of the simulation process are
reported. Finally, in section 4 there are reported con-
clusions.

2 Architecture Components and Objects
The main characteristic of the system is that hardware
components of computer architecture are considered as
inter-related objects by means of addressing methods,
and are used by their method interface (instructions).

We have defined the basic architectural object classes
of both main Von Neumann computer types: the CISC
and the RISC machines.

The hardware components of the computer architec-
ture are described in terms of objects. Every object has
attributes (instance variables), whose values can also be
other objects, and methods which represent the proce-
dures that can manage objects. All the objects that share
the same attributes and methods are grouped in a class.
The structuring of the so defined classes permits the
definition of the properties of hardware components
(objects) selected in the design process. They are acces-
sible to the designer through the object interface.

The object structure is composed as follows:
a) the class name identifies the category to which the

object belongs and defines the component type of ar-
chitecture. For example: the memory, the register,
and so on.

b) The class properties (attributes) describe object char-
acteristics, such as for example content of the mem-
ory word, its length, registers content and so on. At-
tributes can be defined in terms of other objects. This
characteristic is peculiar of the object-oriented ap-
proach and is useful to define complex nested objects
like hardware components.

c) The object operations define the interface through
which the user can consider an object and can mod-
ify the object’s attributes. In order to do that, the in-
terface invokes methods which are structured in two
parts: the signature (or interface) and the body. The
first part contains the name of the method and the
input/output parameters for its correct execution; the
second hidden part contains the implementation (the
code) of methods.

In our system, there are private methods not accessi-
ble to the user, created merely for implementation pur-
poses, and public methods which correspond to the inter-
face of the object shown to the user (designer, student,
assembly program).
The methods are machine language instructions or ad-
dressing methods associated with a specific architectural
component or object.

The addressing methods can be auto-consistent (for
example in the case of immediate or direct addressing) or
related to other objects (for example, in case of register
or indexed addressing which require the reference of the
content of other registers to be executed). In the first
case, the addressing method is available at the creation
of the object instance; in the second one, the method is
available only in the presence of the previously defined
objects.

Figures 1 and 2 report examples of fundamental
classes of CISC and RISC architectures. In the dia-
grams, a class is represented as a rectangle divided
into three regions. The top region contains the name of
the class, the middle one contains attributes which
characterize the properties of the object class: these
two regions constitute a hidden part of the class whose
data are read or updated only by its methods. Finally,
the bottom region contains methods of the class.

An example of object structure is the class
“Register_file”, which has been defined to implement
the "overlapping register windows" technique (used in
RISC architectures to reduce the memory I/O traffic of
procedure calls) [8].

Name of the class:
Register_file; the class name.
Attributes:
Length: integer; this attribute represents the number of

allowed windows.
Windows_counter: integer; this attribute represents the

counter of the current register window (CWP) and
its value is an integer.

Windows: array of integer; this attribute represents the
link of the current class with the set of register
windows, which compose the current class.

Methods:
Length_def(); this method defines (initializes) the value

of the “Length” attribute.

a)

b)

Figure 1. The main classes of a CISC architecture: a) Instruction set level, b) Microprogramming level.

Save(); this method creates an object Window, i.e. an
instance of the Window class, by overlapping
the parameters windows and increasing the
CWP.

Restore(); this method removes the last instanced ob-
ject Window, decreasing the CWP.

In figures, the arcs are relations among classes. The
arcs labeled with an arrow indicate that a class (the
origin of the arc) constitutes the domain of an attribute
of the end class; arcs labeled with a semicircle indicate
that the end class is-a super-class of classes from
which the arcs start.

The set of object instances defined by the user cor-
responds to the conventional computer architecture;
and the set of activated methods is its assembly lan-
guage. The user interacts with the system at a high
level, by choosing objects which form the desired ar-
chitecture. This user task generates a simulator that is
composed of objects selected by the user, while the
corresponding methods define the assembler language
to use the simulator.

3 System Architecture
The overall structure of the system provides two main
sub-systems (Fig. 3), which support two different user-
interaction phases: the definition of an architecture and
the testing of the defined architecture.

The Architecture Definition sub-system is composed
by following three modules:
-The User-Interface, which consists of a graphical inter-

face (Windows-like) to help the user in the choosing
and naming of basic components of the architecture .

-The Basic Hardware Components Data Base Interface,
which, on the basis of the user choice, searches built-in
hardware components in the data base and loads the
selected components and their methods.

-The Prototype Builder, which generates the simulator. It
is invoked when the defined architecture meets the user
requirements.

The Architecture Test sub-system is composed by
following four modules:
-The User Interface, which consists of a graphical inter-

face that shows the status of the architecture during the
execution of the test.

-The Code Editor, which allows the user to write test
programs in assembly language.

-The Code Evaluator, which analyzes assembly pro-
grams to detect syntax errors or op-codes not supported
by the defined architecture.

-The Run module, which gives to the user the possibility
to run a program in a fast or in step-by-step mode, and
to analyze the status of the architecture after the execu-
tion of a whole assembly program or after each in-
struction.

Figure 2. The main classes of a RISC architecture.

3.1 System Interaction
The simulation process is represented by a loop in
which two strictly correlated phases are executed:
-the definition phase, in which the user defines a pro-

totype of the architecture through the choice of
hardware components (instances of classes encapsu-
lating methods);

-the test phase, in which the user, interacting with the
simulator, verifies the prototype defined in the previ-
ous phase.

The two phases are iterated until the user is satis-
fied of the produced architecture.

The great flexibility of the system allows the user
to interact at different levels and to switch from a level
to another. In fact, the architecture could be defined
both at the micro-programming level and at the in-
struction set level. In the latter case, the tool automati-
cally constructs the corresponding micro-architecture.
Mode A) Micro-programming level.
Definition phase. The user chooses components of this

level (ALU, MIR, MPC, control store, etc.) and
he/she defines the micro-architecture with the help of
a menu-driven graphical interface.

Test phase. The system is able to process single micro-
instructions as well as micro-programs edited by the
user in the control store. This phase allows the user
to verify the processor status after the execution of
each micro-instruction. The test phase could lead to a
re-definition of some components of the architecture.

Mode B) Instruction Set Level.
Definition phase. The user chooses components of this

level (central memory, registers, etc.) and defines the
architecture being helped, in this case too, by a

menu-driven graphical interface. The user can switch to
the corresponding micro-architecture level to test it.

Test phase. The system is able to process single instruc-
tions as well as assembly programs, like as in the pre-
vious mode. In addition, the user could process the mi-
cro-program corresponding to the assembly program
edited in the main memory of the defined architecture.

In the phase of architecture definition, the system sup-
ports the user, providing a list of components, according
to the defined classes for the architecture type (see fig-
ures 1-2). When the user inserts a new component (ob-
ject), the system automatically identifies assembler in-
structions and addressing methods for that hardware
component. From an object-oriented point of view, the
signature of the methods associated to objects composes
the assembler language. At the same time, the body of
the methods will concur to the immediate implementa-
tion of the simulator in order to process instructions.

Moreover, the tool doesn’t constraint the user to acti-
vate all methods of the defined architecture. This flexi-
bility allows the evolution of complex vs simple archi-
tecture, as well as complex vs simple instruction set. This
is particularly useful in a teaching environment to
achieve progressive learning of the computer architec-
ture.

The second step of the simulation process is the test-
ing of the defined architecture. In this phase, the user
simulates the model by running a test program.

On the basis of the chosen architecture level, the pro-
gram has to be written in assembly language (instruction
set level) or in micro-code (micro-programming level).
In the simulated run time, the prototype displays results
of the execution in terms of the architecture component’s
status (see figure 4 for an example).

The test can be performed in two different ways:
a) through a single instruction: the user initializes the

components (register, memory, etc.) and writes the in-
struction to be executed.

 b) through a program: the user loads a previously saved
program into the memory, or edits a new one. The exe-
cution of the program can be performed step-by-step to
control the status of the architecture after each instruc-
tion.

In both cases, the simulator controls the program
syntactically and semantically. The syntactic analysis is
aimed at discovering the editing errors. In the semantic
analysis, the simulator verifies that the program can be
executed with the defined architecture and discovers if
some of the program instructions refer to components
that the user did not select.

During the execution, the user can easily switch be-
tween the two architectural levels, in order to analyze
differences in two different run-time environments. In
this way it is possible to have complete control over the
execution of the test program. In fact, in the step-by-step
program execution, users could easily analyze the status
of the defined architecture at the end of the execution of

System

Architecture
Definition
Sub-system

User-Interface
Module

Basic
hardware
Components
(Objects)
Data Base
Interface
Module

Prototype
Builder

Architecture
Test
Sub-system

User-Interface
Module

Code
Editor
Module

Code
Evaluator
Module

Run
Module

Figure 3. The system architecture

each instruction. By switching to the micro-
architecture level, users can easily perform a step-by-
step execution of the micro-code associated to the cur-
rent assembly instruction. In such a way, users have
the possibility to verify the effectiveness of their pro-
grams and the adequacy of the defined architecture.

At the end of the execution, the displayed results
can be saved on a file, as well as the tested assembly
program. Alternatively, if users are not satisfied by the
results of the execution, they can simply re-define
some of the components of the architecture (preferably
at the instruction set level), while the tool will provide
the corresponding updating at the micro-programming
level. When this iterative process leads to a definition
of the computer architecture closer to user's require-
ments, it is possible to generate the code (written in
C++) corresponding to the defined architecture. This
code, when compiled and executed, will provide a
simulator of the defined architecture, completely inde-
pendent from the proposed tool, but it will not provide
the possibility to further updating of the components
of the architecture. In other words, in a typical work
session of the proposed tool, users perform a rapid
prototyping life cycle. In fact an architecture produced

in the definition phase is equivalent to a prototype to be
verified and evaluated and eventually updated (fig. 5).
Instead, the code corresponding to the architecture built
with our tool, represents the final system, ready to be op-
erational.

4 Conclusions
The main goal of our project was to implement a com-
puter simulator to aid the learning process in a course of
computer architecture for undergraduate students. We
encouraged students to design and construct their own
architectures, having some assembly programs as requi-
sites. We think that the advantages of such a tool could
also be extended to the computer design field. These dif-
ferent fields have in common the need to proceed in an
evolutionary way, like prototyping activity in software
development [9, 10].

In the didactic field, this means that alternating the
design and testing phase allows students to be introduced
progressively to the complexity of computer architec-
tures, starting with simplified machines and achieving
complex architectures. In the computer design field, the

Figure 4. Status Simulation of a CISC architecture

same alternation in designing a new architecture helps
to identify problems and to test the design perform-
ance. It can lead to a redefinition of the architectural
requirements in a way similar to the rapid prototyping
activity that achieves the final desired architecture
with a successive refinement of design requirements.

The main advantage of such an approach consists
in the separation of the design and the implementation
phases. This helps the user to establish the design
without considering the implementation details. At the
same time, at the end of the architecture definition
process, the user has, at his disposal, a simulator that
constitutes a software prototype of the designed archi-
tecture.

Another advantage of the tool is the great flexibility
of the object-oriented approach. In fact, users are not
forced to activate all services (instructions and ad-
dressing methods) of the defined architecture. If the
focus is, for example, on a small set of characteristics,
they can select the subset of functionalities needed for
their purposes and deactivate others.

In the educational environment, the proposed
simulator has been successfully used to design some
real CISC and RISC architectures such as Intel 80x86,
SPARC (by Sun Microsystems) and SPUR (by D.
Patterson and C. Sequin, University of Berkeley). In
the experimentation phase, the tools proved to be easy
to use and powerful enough to be effectively used with
standard computer architectures.
This approach is limited in the computer design field;
in fact in our tool, objects representing hardware com-
ponents of the architecture are instances of predefined
classes, and this constraint restricts the choice of new
components with services different from the usual
ones. Therefore, the user has to pay great attention to
the definition of classes. We are studying the possibil-
ity of resolving this disadvantage by adding to the
simulator a class/object editor, in order to allow the
user himself to easily define new classes correspond-

ing to new components with different functionalities, and
a class/editor inspector, to find inconsistencies in the
modified classes model.

References:
[1] De Blasi M. and F. Tangorra, Prolog simulation of

computer architecture in laboratory activities, IEEE
Transactions on Education, 35(4), 1992, pp.331-337.

[2] Tangorra F, The Role of the Computer Architecture
Simulator in the Laboratory, ACM SIGCSE Bulletin,
22(2), 1990, pp. 5-10.

[3] Verschueren jr. A. C., An Object Oriented Design
and Simulation System for VLSI, Microprocessing
and Microprogramming, 30, 1990, pp. 241-246.

[4] Skrien D. and J. Hosack, A multilevel simulator at
the register transfer level for use in an introductory
machine organization class, ACM SIGCSE Bulletin,
23(1), 1991, pp. 5-10.

[5] Kumar S., J. H. Aylor, B. W. Johnson and Wm. A
Wulf, Object-Oriented Techniques in Hardware De-
sign, IEEE Computer, 27(6), 1994, pp. 64-70.

[6] Abbattista F., S. Pizzutilo and F. Tangorra, Object
oriented design of architectures at the instruction set
level, In Proc. of 15th IASTED Intern. Conf. Applied
Informatics, ed. M.H. Hamza, 1997, pp. 58-62.

[7] Abbattista F., S. Pizzutilo and F. Tangorra, Object
oriented approach to design RISC architectures, Proc.
of 16th IASTED Intern. Conf. Applied Informatics, ed.
M.H. Hamza, 1998, pp. 204-207.

[8] Bardakar D., RISC versus CISC: A Tale of two
Chips, Computer Architecture News, 25(1), 1997, pp.
1-12.

[9] Luqi, Software Evolution Through Rapid
Prototyping, IEEE Computer, 22(5), 1989, pp. 9-10.

[10] M.M. Tanik and R.T. Yeh, Rapid Prototyping in
Software Development, IEEE Computer, 22(5), 1989,
pp. 9-10.

 (a) (b)

Figure 5. The computer architecture modeling process (a) vs. the rapid prototyping life cycle (b).

