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Abstract: - We introduce a novel control architecture for Autonomous Mobile Robots called the Reflexive
Instructor (RI) with Deliberate Apprentice (DA). The architecture employs simple reinforcement signals
provided by the RI component to train the DA. The DA is responsible for providing control signals to the
agent’s actuators based on received sensor input. The RI provides a measure of safety in this respect as it is
responsible for taking over control of the mobile robot if the DA makes a mistake as well as providing an
appropriate feedback signal to the DA.

The RIDA interaction is advantageous because it protects the vehicle from its own incompetence and has the
potential to accelerate learning in the DA. We illustrate this by simulating a vehicle employing a simple RI
coupled to a rapid reinforcement artificial neural network as a DA. The DA learns to use sensors while
successfully interacting with its environment.
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1 Introduction
Artificial Neural Network (ANN) architectures have
proven to be effective tools for developing systems
capable of learning control tasks [1]. Their
application to robotics is a natural extension of these
successes. ANNs have been applied to problems as
diverse as reverse kinematics [2], trajectory
acquisition[3]  and task planning[4][5].  ANNs have
enjoyed similar success in Autonomous Mobile
Robotics (AMR).

One of the recurring themes in AMR research is
the inherent unpredictability of the environments
that AMRs are forced to operate in. To a certain
extent unpredictability can be addressed through
learning. For example, an AMR might learn how to
interpret sensor data coming from a sensed object
while exploring an unfamiliar environment and
respond with appropriate control signals to its
actuators. Of course, initial responses will tend to be
inappropriate with improved performance
demonstrated over time.

One of the perennial difficulties in applying
ANNs to AMR systems have been their abysmally
slow learning rates. While in other applications this

can be annoying, it is devastating to many AMR
learning tasks. This is not difficult to understand. If
an ANN requires one hundred repetitions to learn
that the sensor data presented to it indicates that it
has fallen off a cliff, it is unlikely that the other 99
repetitions will occur. The inability to improve
performance in a timely manner has lead to
disastrous failure. The semi-autonomous research
robot Dante II [6] suffered a catastrophic system
failure when it was unable to adapt to a surface
consisting of mud rather than frozen snow while
attempting to walk over it.

This problem has been addressed in several
ways. Most notably is the avoidance of learning
altogether--where learning a task is either
accomplished off-line or is instilled using a carefully
constructed ANN [7][8].

A different approach has been the application of
computationally expensive ANN models in a
suitable environment coupled with a certain degree
of instilled behavior. This approach is perhaps best
exemplified in the driving task discussed in [9].

Various investigators have suggested so-called
reactive approaches to AMRs in which sensed
aspects of the AMR's environment are acted on



immediately through carefully engineered reflexes.
Most notably, Brooks [10] has argued that “speed”
concerns can be avoided by employing carefully
constructing reactive systems based on Finite State
Machines (FSMs). By carefully connecting these
FSMs the AMR can anticipate all aspects of the
environment it is likely to encounter. His
subsumption approach has proven quite successful
for a wide range of low-level tasks such as wall
following and collision avoidance [11], however
critics have correctly indicated that the AMR's
designer must anticipate every eventuality and
design the robot's reactive systems to address them.
This is problematic, one cannot send an AMR to a
distant planet and continue to tweak it into correct
behavior.

We propose a model that can take advantage of
the learning and control characteristics of certain
ANNs and can make use of the reflexive response
associated with reactive systems to compensate for
relatively slow learning.

We call this control architecture the Reflexive
Instructor with Deliberate Apprentice (RIDA) and
discuss it in more detail in the following section. We
go on to describe a RIDA implementation
employing a reinforcement ANN as a learning
component (DA) coupled with a RI employing
reflexes. We apply this design to a simple collision
avoidance problem. Finally we discuss some of the
results of implementing the design.

2 The RIDA Architecture
RIDA consists of two independent, yet related sub-
systems,

1. Reflexive Instructors (RI), and
2. Deliberate Apprentice (DA).

The sub-systems interact in a way best thought of
in a pedagogical sense. The DA attempts to send
control signals to the actuators it is intended to
control. The RI, in turn, monitors the control signals
and either does nothing if a control signal is
appropriate or intervenes by over-riding the DA’s
signal and injecting its own signal which it deems to
be more appropriate--much as a teacher might
correct the spelling of an errant pupil. At the same
time, the activated RI informs the DA that it did
something wrong.

This approach differs from classical
reinforcement learning [12] by actually correcting a
mistake made by the system that is learning.
However, the learning system is not corrected--the
AMR is. For example, if an AMR were about to

launch itself off a cliff, it would be stopped by the
RI component and would also inform the DA about
its error.

The RI is responsible for performing a correct
action (which may not be optimal) based on its
reaction to the situation. This reaction is similar to
the way our reflexes might protect us from severe
burns. We are forced to withdraw a hand from an
open flame and we are given an opportunity to learn
about flame through pain.

The figure below illustrates the relationship
between the RI and DA components. Note that the
sensor signals going to the RI and DA need not
come from the same sensor.

Figure 1 The RIDA Architecture

The RIDA architecture presents a hierarchical
control scheme that places the RI in ultimate control
of the actuator. The RI defers to the control signals
of the DA so long as the DA’s control signals do not
result in the RI's activation. The DA is free to
“discover” control signals that result in the DA
receiving optimum feedback from the RI.

The RI would normally consist of a highly
reliable safety controller which would avoid the cliff
problem alluded to previously. This frees the
designer to select any higher level DA that is
appropriate for the task.

3 The Problem
As an illustration of RIDA we selected the classic
problem of designing an AMR that is capable of
avoiding collisions with walls while remaining in
motion. A collision is defined as any physical
contact with a wall. Our goal was that the DA
component of the AMR would learn how to use its
sensor inputs to better control the vehicle than the RI
could. To accomplish this we had to select a RI
component that would promote the learning of the
DA component. While the task is relatively simple,



we use it here to illustrate the supervision potential
of the RI.

4 The AMR and RIDA Designs
The model AMR vehicle we employed is illustrated
below.

Figure 2 The Model AMR

Sensors on the vehicle consist of both sonar and
whisker contact sensors. The left ( 0W ) and right

( 1W ) whisker sensors activate on contact and are
cross-connected to the right and left RIs. The RIs
were selected on the basis of reliability. This is
appropriate for controllers that are the “final line of
defence” against failure of the entire system. They
consist of a simple reversal circuit as describe in
[13], attached to the drive motors of the
differentially steered AMR. When a whisker is
depressed the current to the attached motor is
reversed for a short period. The cross-connection is
suggested in [14]. As the AMR contacts a wall the
drive motor on the opposite side of the sensor will
temporally reverse thus pulling the AMR away from
the wall.

The sonar sensors ( 0S  through 4S ) communicate

with the DA. The sonar was calibrated to send
discrete signals indicating close, middle and distant
objects. Since the number of potential actions of an
AMR is limited by its actuators’ ability to
implement them, it is common practice to attempt to
map what the sensors perceive to actions the
actuators can actually perform. In our case the five
sonar sensors with three discrete distance
measurements were mapped to five drive/steering
actuators capable of moving the vehicle left, left

forward, forward, right forward or right. The vehicle
was not permitted to stop as this was the trivial "safe
state" and would not accomplish the goal of
remaining in motion. Reversing was not allowed as
no sensors were provided to the rear of the vehicle.
This was done to avoid backing up in a blind state.

[15] have suggested a Rapid Reinforcement (RR)
ANN for performing this mapping employing a
modified feed-forward, winner-take-all neural
network to perform the selection of the next action
and using a punishment/reward signal to act as a
reinforcement generator.

The ANN architecture is not particularly
complex, employing only 15 input and 5 output
units, however it does rely on a relatively simple
feedback mechanism that is appropriately provided
by the RI. The network architecture is shown in
figure 3. For a detailed description of the learning
algorithm see [16]. Other potential DA candidates
were [17] and [18].

Figure 3 RR Network Architecture

Essentially, the RR attempts to send the correct
output to the control signal generator whose signals
are interpreted by the RIs. When the DA achieves
correct output, the RI does nothing. When the output
produces a control signal resulting in a collision, the
RI intervenes--producing a corrected control signal
and sends feedback to the DA.

 In our starting configuration, the DA does not
have knowledge of how to control the vehicle
correctly and must rely on the RI quite heavily.



5 The AMR and RIDA
Simulation
The AMR was placed in a simulated environment as
illustrated in figure 4. The vehicle is identified by
the number 5 which indicates its orientation relative
to the "arena". 0 indicates straight up, 2 indicates
right, 4 straight down and 6 left. In this case the
vehicle is facing to the middle of the left side of the
arena. The vertical and horizontal bars represent
walls.

Figure 4 The Arena

Two vehicles were simulated. The first was the
AMR employing the RIDA architecture as
discussed. The second did not use the RI portion and
relied only on the RR network as implemented in
[15] relying on simple reinforcement learning to
correct its future behaviour.

The diagrams below illustrate the results of a
typical trial run conducted employing the RIDA
equipped AMR (figure 5) and an AMR equipped
with only a RR network (figure 6). At the end of the
trial the RIDA equipped vehicle had collided with
walls 11 times out of 100 time steps allocated for the
trial.

Figure 5 Path of the RIDA AMR

Figure 6 Path of the RR AMR

No further collisions occurred the last quarter of
the trial. In contrast the RR equipped AMR collided
64 times with walls and continued to do so
throughout the trial with no evidence of
improvement over time.

The RI/DA vehicle incurred far fewer collisions
and managed to traverse more of the actual arena in
the same number of time steps than the non-RIDA
AMR which was fettered by a series of collisions
which lead to other collisions substantially hindering
its progress.

Of interest is the pattern that the RI/DA vehicle
exhibits. One can clearly see that the vehicle has
actually discovered a form of wall following as it
moves about the arena. This could be due to the RI
policy that has a tendency to place the vehicle
parallel to the wall at which a collision occurred.

The circular motion evident in the lower right
quadrant of figure 5 occurred at the end of the trial
and is a result commonly observed in reinforcement
learning methods and was also observed in [13]. The
AMR seems to have found a "safe" path that avoids
collisions and keeps the AMR in Motion but is not
the most effective means of traversing the arena.

Figure 7 further illustrates the superiority of the
RIDA approach. After an initial “training set” of
collisions (curve marked with squares), the RI/DA
controller stopped employing the RI and became
wholly reliant on the DA for guidance. In effect the
AMR had learned to control the vehicle using the
sonar sensors instead of relying on the more
primitive whisker sensors. The RR network (curve
marked by triangles) simply kept colliding with
walls.



Figure 7 RIDA vs. RR Performance

6 Conclusion
We have demonstrated that by providing a safety
mechanism in the form of the RI component to an
AMR we are able to outperform a similar vehicle
without this component. The RIDA interaction
provides a richer feedback than is possible with
more traditional reinforcement learning networks
and was able to contribute to faster learning. In
addition, there is the benefit an AMR gains by
avoiding unnecessary--and possibly disastrous
failure while learning a new task. This provides a
certain cushion in which the DA component can
continue to fail and learn and the AMR, as a whole,
remains viable.

While the collision avoidance task is--in some
sense--a "toy problem", it should be possible to
employ the RIDA technique in selected
circumstances where more traditional approaches
are impossible. Potential mission environments
might include planetary exploration or providing
assistance in dangerous environments. Both settings
do not lend themselves well to extensive modeling
or prediction of their environments.

We have conducted other trials involving various
ANN DAs engaged in various low-level tasks, and
have achieved similar results. Learning is faster and
the vehicle is protected from destruction. In addition
we have replaced the learning DA with a reactive
DA and have achieved a hierarchy of control very
similar to that achieved by subsumption.

We wish to be very clear, under conditions where
uncertainty exists about the nature of the
environment, or an AMR's response to that
environment, the RIDA architecture provides much
needed support for learning and is especially well
suited to enhancing the performance of

reinforcement ANNs involved in Relevant AMR
tasks.
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