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Abstract: Inverted pendulums are very suitable to illustrate many ideas in automatic control of nonlinear sys-

tems. The rotational inverted pendulum is an interesting novel design that has some interesting dynamics

features that are not present in inverted pendulums with linear motion of the pivot. In this paper a Hopf

bifurcation, and its possible degeneracies, of the equilibrium point at the upright pendulum position that ap-

pears for the controlled closed-loop system, has been studied by means of the center manifold theorem and the

normal form theory. Some numerical results are also presented in order to verify the mathematical analysis.
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1 Introduction

Inverted pendulums have become very popular de-

vices both as benchmark for nonlinear control analysis

and for educational purposes. There are di�erent ver-

sions of these systems. In particular, the rotational

inverted pendulum developed by Furuta [1] is an in-

teresting nonlinear complex system that allows to il-

lustrate many di�erent control principles.

The Furuta pendulum is basically a pole that moves

freely around a pivot. This pivot can be moved

through a mechanical arm connected to a DC motor.

Since the acceleration of the pole can not be controlled

in a direct form, the pendulum is an underactuated

mechanical system. One of the control objectives is

to stabilize the pole to the upper position by moving

the motor arm. A linear feedback is introduced to sta-

bilize the system at the upright unstable equilibrium

position. The resulting closed-loop system has a stable

local behaviour around this equilibrium. However the

existence of an unstable limit cycle gives to this equi
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librium its local character and makes a very di�cult

problem to determine the region of attraction. Never-

theless, a depth understanding of the global behaviour

of the system (for instance, for the swing up problem

[2]) makes imperative a detailed analysis of this unsta-

ble limit cycle, and the Hopf bifurcation associated to

it.

The Furuta pendulum also has several interesting

dynamic features that are not present in a pendulum

with linear motion of the pivot. There is, for exam-

ple, an interesting pitchfork bifurcation, for the un-

controlled system, when the pivot arm is rotated [2].

There are two equilibrium points for slow angular ve-

locities and four equilibria at high speed. For the con-

trolled closed-loop system there is a Hopf bifurcation

of the origin that gives rise to an unstable limit cycle

around this equilibrium point. This local phenomenon

will be studied in this paper by means of the center

manifold theorem and the normal form theory.

The equations of motion are given in Section 2. The

Furuta pendulum is a four order nonlinear system that

is di�cult to analyze. Several approximations have

been made to obtain tractable problems [1], [2]. In this

paper a third order model of the Furuta pendulum is

considered. This model gives a reasonable approxima-



tion to the qualitative behaviour of the complete model

system. In Section 3, normal form analysis is applied

in order to provide a systematic reduction of the sys-

tem representation to a minimal form (called normal

form) and it is used to determine the local behaviour

of the system. Some numerical results are presented

in Section 4 to con�rm the validity of our analysis.

2 Preliminary Results

Consider the rotational inverted pendulum as shown

in Fig. 1, where � is the angle that the pendulum

(l) makes with the vertical and ' is the angle of the

motor arm (r). The Furuta pendulum behaviour can
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Figure 1: Furuta pendulum system, showing the mo-

tor arm and the pendulum rotational planes.

be described by the normalized equations

�� � _'2 sin � cos� + � �' cos� � sin � + cp _� = 0;

�'+ ca _' = ku;
(1)

where �; k; cp; ca are positive constants depending on

the physical pendulum characteristics; cp; ca are the

parameters corresponding with the damping terms;

and u is the control action.

Introducing x1 = �, x2 = _� and x3 = _', Eqs. (1)

can be rewritten as

_x1 = x2;

_x2 = sinx1 + x23 sinx1cosx1

��(ku� cax3)cosx1 � cpx2;

_x3 = ku� cax3;

(2)

where

u = l1x1 + l2x2 + l3x3

is the proposed state-feedback linear control and

l1; l2; l3 are the control parameters. The equilibria of

the system (2) are the solutions for x1, x2 and x3 to

the equations

x2 = 0;

sinx1(1 + x23cosx1) = 0;

ku� cax3 = 0;

u = l1x1 + l3x3;

(3)

Therefore, solving these equations, it is found that the

system has the following equilibrium points

xe1 = (0; 0; 0); xe2 =
�
�; 0; kl1�

ca�kl3

�
;

xe3 = (�x1; 0; �x3); xe4 = (2� � �x1; 0; �x3);

where

�x1 = arccos
h
�(ca�kl3)

2

(kl1)2 �x12

i
; �x3 =

kl1 �x1
ca�kl3

: (4)

These last expressions can be graphically solved, as

it is shown in Fig. 2, in order to obtain �x1 and �x3.

Note that there exist in�nite solutions to the above

equations. The stability character of these equilibria
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Figure 2: Graphic resolution of Eq. (4).

can be determined evaluating the Jacobian matrix at

the di�erent equilibrium points. The generic Jacobian

matrix is expressed by

A =

0
BB@

0 1 0

a21 a22 a23

k l1 k l2 k l3 � ca

1
CCA (5)

where

a21 = cosx1 + x23 cos
2 x1 � x23 sin

2 x1
��k l1 cosx1 + � (k (l1 x1 + l2 x2 + l3 x3)

�ca x3) sinx1;
a22 = ��k l2 cosx1 � cp;

a23 = 2x3 sinx1 cosx1 � � (k l3 � ca) cosx1:



Chosen adequately the control parameters, it is ob-

tained that xe1 is a stable equilibrium point (namely

origin for the later analysis), xe2 is a saddle point and

the other equilibria xe3 ; xe4 are all stable.

3 Hopf Bifurcation Analysis

In this section we study the Hopf bifurcation at the

origin, and its possible degeneracies, that the system

modeling the Furuta pendulum can display due to con-

trol parameter changes. Let us consider the system

given by Eqs. (2). A Hopf bifurcation arises when

a hyperbolic focus changes its stability, as the bifur-

cation parameters vary, giving rise to the appearance

of small-amplitude periodic oscillations from the equi-

librium state. This phenomenon is produced when a

complex-conjugate pair of eigenvalues of the lineariza-

tion matrix crosses the imaginary axis at certain criti-

cal parameter values. If we consider the Hopf bifurca-

tion normal form (see [6])

_� = � (�) �+ �1�
3 + �2�

5 + �3�
7 + � � � ;

with � (0) = 0 and � considered as the bifurcation

parameter, a transversal non-degenerate Hopf bifurca-

tion occurs when the hypothesis of a transversal cross-

ing veri�es, that is, when
d�

d�
(0) 6= 0 and �1 6= 0;

if �1 = 0 and �2 6= 0 a degenerate codimension 2

Hopf bifurcation, labelled DH , holds; if �1 = �2 = 0,

�3 6= 0 a degenerate codimension 3 Hopf bifurcation

appears. The sign of the third-order coe�cient �1
produces two types of Hopf bifurcations: when �1 is

negative, a supercritical Hopf bifurcation holds (this

is characterized by the stability of the periodic orbit

arising from the equilibrium state); when �1 is pos-

itive, a subcritical Hopf bifurcation appears (that is,

an unstable periodic orbit emerges). These two cases

correspond to a non-degenerate (codimension 1) Hopf

bifurcation. The unfolding of the degeneracy labelled

DH is characterized by the appearance, from the criti-

cal parameter values in the parameter space where the

bifurcation holds, of a saddle-node of periodic orbits

bifurcation locus.

Other cases of higher codimension Hopf bifurcation

are possible when the higher-order coe�cients in the

Hopf bifurcation normal form vanish.

In order to carry out the study of the Hopf bifur-

cation at the origin for system (2), we consider Taylor

expansions about the origin up to third-degree for the

functions de�ning system (2), obtaining the new sys-

tem

_x1 = x2;

_x2 = (1� �kl1)x1 � (�kl2 + cp)x2
+� (ca � kl3)x3

+
�
�kl1
2

� 1
6

�
x31 + x1x

2
3

+�k
2
l2x

2
1x2 +

�
2
(kl3 � ca)x

2
1x3;

_x3 = kl1x1 + kl2x2 + kl3x3 � cax3:

(6)

We note that the origin is an equilibrium point for all

the values of the parameters, due to the fact that the

system is ZZ2-symmetric, that is, invariant under the

transformation (x; y; z) �! (�x;�y;�z). To study

the dynamics around the origin, we consider the lin-

earization matrix at that equilibrium,

A =

0
BB@

0 1 0

1� �kl1 ��kl2 � cp �ca � �kl3

kl1 kl2 kl3 � ca

1
CCA (7)

whose characteristic polynomial p(s) = s3 � p1s
2 �

p2s� p3 has the coe�cients

p1 = �cp � �kl2 + kl3 � ca;

p2 = �cpca + 1 + cpkl3 � �kl1;

p3 = ca � kl3:

It is easy to check that a pair of imaginary eigenvalues

and a third one nonzero may arise in system (6). This

degeneration occurs when p1p2 + p3 = 0, p2 < 0, p3 6=
0. The analysis of the corresponding Hopf bifurcation

at the origin will be carried out in what follows.

So, we focus on the case when the linearization ma-

trix at the origin (7) has the eigenvalues �1;2 = �!0j
and �3 6= 0, where !0 =

p�p2 > 0 and �3 = �p3=p2.
In this case, we have a bidimensional center manifold

and a one-dimensional stable/unstable manifold, de-

pending on the sign of �3.

In terms of the parameters of the linear part of the

system, this degeneration occurs when:

l2 = lc2 =
cp
�
p23 � p2

�
+ �kl1p3

�kp2
; p2 < 0; p3 6= 0;

(8)

or

l1 = lc1 =
p1 + p3 � p1p3cp

�kp1
; p2 < 0; p3 6= 0: (9)

In order to know the number of periodic orbits that

emerge from a Hopf bifurcation, as well as their sta-

bility, we focus on the stability analysis of the Hopf

bifurcation. Considering �rst only codimension-one bi-

furcations, we can choose l2 as bifurcation parameter.

Analogous analysis can be performed using the other

control parameters as bifurcation parameter. For l2



close to the parameter value where the Hopf bifurca-

tion takes place, lc2, the linearization matrix at the

origin (7) has eigenvalues � (l2)� j! (l2), � (l2), with

� (l2) = � 2k�2p23p
3
2

4�p23 (p
2
3 + !2

0p
2
2)

(l2 � lc2) +O
�jl2 � lc2j2

�
;

! (l2) = !0 +O (jl2 � lc2j) ;
� (l2) = �3 +O (jl2 � lc2j) :

The transversality condition

�0 (lc2) = � 2k�2p23p
3
2

4�p23 (p
2
3 + !2

0p
2
2)
6= 0

holds for all the values of the parameters. Thus, all

the Hopf bifurcation that may arise for system (6),

both nondegenerate and degenerate, will be transver-

sal Hopf bifurcation.

In the analysis of the stability of the Hopf bifurca-

tion, we have to determine the �rst nonzero normal

form coe�cient for the Hopf bifurcation. To do this,

�rst we make the linear change

0
BB@

x1

x2

x3

1
CCA =

0
BB@

0 1 1

!0 0 �p3
p2

!0
1�p2
�p2

� cp
�

k(l1p2�l2p3)

p3(p2�1)

1
CCA

0
BB@

X1

X2

X3

1
CCA ;

which yields

0
BB@

_X1

_X2

_X3

1
CCA =

0
@

0 �!0
!0 0

�3

1
A

0
BB@

X1

X2

X3

1
CCA+ N.L.T.

where N.L.T. denotes nonlinear terms. Our aim is to

obtain the normal form for the reduced system on the

center manifold X3 = H(X1; X2). The quoted normal

form in polar coordinates X1 = � cos �, X2 = � sin � is

_� = �1�
3 + �2�

5 + � � � ; _� = !0 + � � � :

In the study of the Hopf bifurcation of system (6) and

its possible degeneracies, hand calculation (as opposed

to numerical evaluation) of very long expressions is re-

quired, when the corresponding bifurcation formulae

are being used. Freire et al. in [5] develop a recursive

algorithm well suited to symbolic computation imple-

mentation, that turns out to be an e�cient procedure

to obtain the coe�cients of the Hopf bifurcation nor-

mal form. This algorithm is based upon the use of Lie

transforms; the calculations are arranged in a recursive

scheme using complex variables and so the computa-

tional e�ort is optimized.

The application of the aforementioned algorithm, by

means of a MAPLE program, allows to compute the

coe�cients �1 and �2 of order 3 and 5, respectively,

of the Hopf bifurcation normal form. From the linear

approximation of the center manifold, X3 = 0, we get

the reduced system up to third order, and we are able

to obtain the �rst coe�cient of the normal form. For

the sake of brevity this coe�cient is not shown in its

general form in this paper. However, the expression

for �1 can be substantially reduced if it is considered

the following set of system parameter values: ca =

0:5; cp = 0:5; k = 41:11; � = 0:42, and the control

parameter l3 = 1. This set of parameter values is in

agreement with the actual system. So,

�1 =
A1

A2

;

where

A1 = �5:206 l52 + 37:437 l42 � 89:239 l32
+71:776 l22 � 2:813 l2 � 0:144;

A2 = (0:183 l42 � 1:271 l32 + 2:929 l22
�2:209 l2 � 0:0664)(41:11 l2� 95:5):

From A1 = 0 and from Eq. (9) the pairs (l1; l2) cor-

responding to degenerate codimension-two Hopf bifur-

cation points can be calculated, provided that the sec-

ond coe�cient �2 does not vanish. Only one solution

is obtained, namely, l1 = 1:49; l2 = 2:855.

To obtain the second coe�cient for the Hopf bifur-

cation, we need the third-order approximation to the

center manifold (obtained using the method described

in [4]):

X3 = � (3!0
2 c1+6!0

2 c3+�2
3
c1+2 c2 �3 !0)!0

10!02 �
2

3
+9!04+�4

3

X3
1

��3 (3!0
2 c1+6!0

2 c3+�2
3
c1+2 c2 �3 !0)

10!02 �
2

3
+9!04+�4

3

X2
1X2

� 9!0
3 c3�2!0 �

2

3
c1+3!0

2 c2 �3+3�2
3
!0 c3+�3

3
c2

10!02 �
2

3
+9!04+�4

3

X1X
2
2

� 2!0
2 c1 �3�3!0

3 c2+7!0
2 c3 �3�c2 �

2

3
!0+c3 �

3

3

10!02 �
2

3
+9!04+�4

3

X3
2 ;

where

c1 = � (1� p2)
2

�2p2
;

c2 =
�k

2
!0l

c
2 �

2cp!0 (1� p2)

�2p2
� p3!0 (1� p2)

2�p2
;

c3 =
�kl1

2
� 1

6
+
p3cp

2
:

This approximation allows to obtain the �fth-order re-

duced system and then we can compute the second

normal form coe�cient for the reduced system on the

center manifold, �2, that we do not display here due

to it is rather cumbersome. Whenever �1 = 0 and

�2 6= 0, we have a Hopf bifurcation of codimension-

two. We can assure that a saddle-node bifurcation of

periodic orbits is present.



4 Numerical Results

In this Section numerical results obtained using AUTO

software [3] are showed for the set of system parame-

ters: ca = 0:5; cp = 0:5; k = 41:11; � = 0:42. The con-

trol parameters l1; l2 and l3 are selected as the bifur-

cation parameters. A schematic bifurcation set in the

parameter plane (l1; l2) around a degenerate Hopf Bi-

furcation point (DH) is presented in Fig. 3a. This pic-

ture shows di�erent system behaviour modes. Three

diferent demarked frontiers: a Saddle Node Periodic

Orbit, named SNPO, a subcritical Hopf Bifurcation,

denoted by HBsub and a supercritical Hopf Bifurca-

tion, labelled as HBsup, split the diagram in three dif-

ferent regions. In region 1 there exist only one unstable

equilibrium point (saddle point); region 2 has one un-

stable equilibrium point at the origin and two limit cy-

cles, the �rst stable and the second around it unstable;

region 3 presents one stable equilibrium point and one

unstable limit cycle around it. Schematic eingenvalues

and state-space diagrams are also presented in Fig. 3b.

In Fig. 4a it is shown the bifurcation diagram for l1 as

the bifurcation parameter. This diagram corresponds

to a seccion in the plane (l1; l2) involving regions one

and three in Fig. 3a. For lc1 a subcritical Hopf Bifur-

cation (HB) undergoes giving rise to an unstable limit

cycle. As can be seen in Fig. 4b the size of attraction

region, delimited by this unstable limit cycle, is a func-

tion of the l1 parameter and it is larger as l1 increase.

A Saddle-Node bifurcation of periodic orbits (SNPO)

occurs due to the presence of a degenerate codimen-

sion 2 Hopf bifurcation as can be observed in Fig. 5.

In Fig. 6, the bifurcation and the state-space diagrams

for l2 as bifurcation parameter are shown. In Fig. 7

the bifurcation diagram for l3 as bifurcation parame-

ter is also shown. Note that in Fig. 7 appears a point

(PB), for l3 = ca=k, where in�nite equilibrium points

coexist. Also, in the same �gure, a Hopf bifurcation

point (HB), approximately for l3 = 1:63, is present.

In�nite periodic orbits coexist at this singular point.

5 Conclusion

A Hopf bifurcation analysis of the equilibrium point

at the upright position in the Furuta pendulum has

been presented. The analysis e�ectuated by means

of normal form theory allows to determine the di�er-

ent system behaviour modes when a stabilizing state-

feedback controller is applied to the nonlinear model

of the rotational inverted pendulum. Using these di-

agrams it is possible to know the range of variation

of the control parameters previously to adjust the sta-

bilizing controller. Controller robustness can be also

studied applying the technique shown in this paper.

Moreover, the size of the attraction region can be also

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

2.

3.

4.

5.

6.

7.

l

1

2

3

2

DH
HB 

SNPO

x

x

sub

HB 

x
stable focus

sup

a)

1 2 3

saddle point

1

l

Im Im Im

 Re Re Re

λ

λ

λ

λ

λ

λ

b)

Figure 3: a) Bifurcation set around the DH point. b)

Eigenvalues and state-space diagrams for the di�erent

regions shown in a).

estimated numerically using bifurcation diagrams con-

structed for the control parameters.
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